如何以最有效的内存和时间方式获取大文件的行数?
def file_len(filename):
with open(filename) as f:
for i, _ in enumerate(f):
pass
return i + 1
如何以最有效的内存和时间方式获取大文件的行数?
def file_len(filename):
with open(filename) as f:
for i, _ in enumerate(f):
pass
return i + 1
当前回答
我使用的最简单和最短的方法是:
f = open("my_file.txt", "r")
len(f.readlines())
其他回答
打开一个文件的结果是一个迭代器,它可以转换为一个序列,它有一个长度:
with open(filename) as f:
return len(list(f))
这比显式循环更简洁,并避免了枚举。
创建一个可执行脚本文件count.py:
#!/usr/bin/python
import sys
count = 0
for line in sys.stdin:
count+=1
然后将文件的内容导入python脚本:cat huge.txt | ./count.py。管道也适用于Powershell,因此您将最终计算行数。
对我来说,在Linux上它比简单的解决方案快30%:
count=1
with open('huge.txt') as f:
count+=1
这个呢?
import sys
sys.stdin=open('fname','r')
data=sys.stdin.readlines()
print "counted",len(data),"lines"
凯尔的回答
num_lines = sum(1 for line in open('my_file.txt'))
最好的替代方案是什么
num_lines = len(open('my_file.txt').read().splitlines())
这里是两者的性能比较
In [20]: timeit sum(1 for line in open('Charts.ipynb'))
100000 loops, best of 3: 9.79 µs per loop
In [21]: timeit len(open('Charts.ipynb').read().splitlines())
100000 loops, best of 3: 12 µs per loop
print open('file.txt', 'r').read().count("\n") + 1