如何以最有效的内存和时间方式获取大文件的行数?
def file_len(filename):
with open(filename) as f:
for i, _ in enumerate(f):
pass
return i + 1
如何以最有效的内存和时间方式获取大文件的行数?
def file_len(filename):
with open(filename) as f:
for i, _ in enumerate(f):
pass
return i + 1
当前回答
使用Numba
我们可以使用Numba来JIT(及时)编译我们的函数到机器代码。Def numbacountparallel(fname)运行速度快2.8倍 然后从问题中定义file_len(fname)。
注:
在运行基准测试之前,操作系统已经将文件缓存到内存中,因为我在我的PC上没有看到太多的磁盘活动。 第一次读取文件时,时间会慢得多,因此使用Numba的时间优势并不显著。
第一次调用函数时,JIT编译需要额外的时间。
如果我们不只是计算行数,这个就很有用了。
Cython是另一个选择。
http://numba.pydata.org/
结论
因为计算行数是IO绑定的,所以使用问题中的def file_len(fname),除非你想做的不仅仅是计算行数。
import timeit
from numba import jit, prange
import numpy as np
from itertools import (takewhile,repeat)
FILE = '../data/us_confirmed.csv' # 40.6MB, 371755 line file
CR = ord('\n')
# Copied from the question above. Used as a benchmark
def file_len(fname):
with open(fname) as f:
for i, l in enumerate(f):
pass
return i + 1
# Copied from another answer. Used as a benchmark
def rawincount(filename):
f = open(filename, 'rb')
bufgen = takewhile(lambda x: x, (f.read(1024*1024*10) for _ in repeat(None)))
return sum( buf.count(b'\n') for buf in bufgen )
# Single thread
@jit(nopython=True)
def numbacountsingle_chunk(bs):
c = 0
for i in range(len(bs)):
if bs[i] == CR:
c += 1
return c
def numbacountsingle(filename):
f = open(filename, "rb")
total = 0
while True:
chunk = f.read(1024*1024*10)
lines = numbacountsingle_chunk(chunk)
total += lines
if not chunk:
break
return total
# Multi thread
@jit(nopython=True, parallel=True)
def numbacountparallel_chunk(bs):
c = 0
for i in prange(len(bs)):
if bs[i] == CR:
c += 1
return c
def numbacountparallel(filename):
f = open(filename, "rb")
total = 0
while True:
chunk = f.read(1024*1024*10)
lines = numbacountparallel_chunk(np.frombuffer(chunk, dtype=np.uint8))
total += lines
if not chunk:
break
return total
print('numbacountparallel')
print(numbacountparallel(FILE)) # This allows Numba to compile and cache the function without adding to the time.
print(timeit.Timer(lambda: numbacountparallel(FILE)).timeit(number=100))
print('\nnumbacountsingle')
print(numbacountsingle(FILE))
print(timeit.Timer(lambda: numbacountsingle(FILE)).timeit(number=100))
print('\nfile_len')
print(file_len(FILE))
print(timeit.Timer(lambda: rawincount(FILE)).timeit(number=100))
print('\nrawincount')
print(rawincount(FILE))
print(timeit.Timer(lambda: rawincount(FILE)).timeit(number=100))
每个函数调用100次的时间(以秒为单位)
numbacountparallel
371755
2.8007332000000003
numbacountsingle
371755
3.1508585999999994
file_len
371755
6.7945494
rawincount
371755
6.815438
其他回答
下面这句话怎么样:
file_length = len(open('myfile.txt','r').read().split('\n'))
用这种方法在一个3900行的文件上计时只需要0.003秒
def c():
import time
s = time.time()
file_length = len(open('myfile.txt','r').read().split('\n'))
print time.time() - s
def line_count(path):
count = 0
with open(path) as lines:
for count, l in enumerate(lines, start=1):
pass
return count
为什么下面的方法行不通呢?
import sys
# input comes from STDIN
file = sys.stdin
data = file.readlines()
# get total number of lines in file
lines = len(data)
print lines
在这种情况下,len函数使用输入行作为确定长度的方法。
这是我用的,看起来很干净:
import subprocess
def count_file_lines(file_path):
"""
Counts the number of lines in a file using wc utility.
:param file_path: path to file
:return: int, no of lines
"""
num = subprocess.check_output(['wc', '-l', file_path])
num = num.split(' ')
return int(num[0])
更新:这比使用纯python略快,但以内存使用为代价。子进程在执行您的命令时将派生一个与父进程具有相同内存占用的新进程。
使用Numba
我们可以使用Numba来JIT(及时)编译我们的函数到机器代码。Def numbacountparallel(fname)运行速度快2.8倍 然后从问题中定义file_len(fname)。
注:
在运行基准测试之前,操作系统已经将文件缓存到内存中,因为我在我的PC上没有看到太多的磁盘活动。 第一次读取文件时,时间会慢得多,因此使用Numba的时间优势并不显著。
第一次调用函数时,JIT编译需要额外的时间。
如果我们不只是计算行数,这个就很有用了。
Cython是另一个选择。
http://numba.pydata.org/
结论
因为计算行数是IO绑定的,所以使用问题中的def file_len(fname),除非你想做的不仅仅是计算行数。
import timeit
from numba import jit, prange
import numpy as np
from itertools import (takewhile,repeat)
FILE = '../data/us_confirmed.csv' # 40.6MB, 371755 line file
CR = ord('\n')
# Copied from the question above. Used as a benchmark
def file_len(fname):
with open(fname) as f:
for i, l in enumerate(f):
pass
return i + 1
# Copied from another answer. Used as a benchmark
def rawincount(filename):
f = open(filename, 'rb')
bufgen = takewhile(lambda x: x, (f.read(1024*1024*10) for _ in repeat(None)))
return sum( buf.count(b'\n') for buf in bufgen )
# Single thread
@jit(nopython=True)
def numbacountsingle_chunk(bs):
c = 0
for i in range(len(bs)):
if bs[i] == CR:
c += 1
return c
def numbacountsingle(filename):
f = open(filename, "rb")
total = 0
while True:
chunk = f.read(1024*1024*10)
lines = numbacountsingle_chunk(chunk)
total += lines
if not chunk:
break
return total
# Multi thread
@jit(nopython=True, parallel=True)
def numbacountparallel_chunk(bs):
c = 0
for i in prange(len(bs)):
if bs[i] == CR:
c += 1
return c
def numbacountparallel(filename):
f = open(filename, "rb")
total = 0
while True:
chunk = f.read(1024*1024*10)
lines = numbacountparallel_chunk(np.frombuffer(chunk, dtype=np.uint8))
total += lines
if not chunk:
break
return total
print('numbacountparallel')
print(numbacountparallel(FILE)) # This allows Numba to compile and cache the function without adding to the time.
print(timeit.Timer(lambda: numbacountparallel(FILE)).timeit(number=100))
print('\nnumbacountsingle')
print(numbacountsingle(FILE))
print(timeit.Timer(lambda: numbacountsingle(FILE)).timeit(number=100))
print('\nfile_len')
print(file_len(FILE))
print(timeit.Timer(lambda: rawincount(FILE)).timeit(number=100))
print('\nrawincount')
print(rawincount(FILE))
print(timeit.Timer(lambda: rawincount(FILE)).timeit(number=100))
每个函数调用100次的时间(以秒为单位)
numbacountparallel
371755
2.8007332000000003
numbacountsingle
371755
3.1508585999999994
file_len
371755
6.7945494
rawincount
371755
6.815438