我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
当前回答
下面是HSQLDB的SQL实现:
CREATE FUNCTION dist_to_segment(px double, py double, vx double, vy double, wx double, wy double)
RETURNS double
BEGIN atomic
declare l2 double;
declare t double;
declare nx double;
declare ny double;
set l2 =(vx - wx)*(vx - wx) + (vy - wy)*(vy - wy);
IF l2 = 0 THEN
RETURN sqrt((vx - px)*(vx - px) + (vy - py)*(vy - py));
ELSE
set t = ((px - vx) * (wx - vx) + (py - vy) * (wy - vy)) / l2;
set t = GREATEST(0, LEAST(1, t));
set nx=vx + t * (wx - vx);
set ny=vy + t * (wy - vy);
RETURN sqrt((nx - px)*(nx - px) + (ny - py)*(ny - py));
END IF;
END;
Postgres的实现:
CREATE FUNCTION dist_to_segment(px numeric, py numeric, vx numeric, vy numeric, wx numeric, wy numeric)
RETURNS numeric
AS $$
declare l2 numeric;
declare t numeric;
declare nx numeric;
declare ny numeric;
BEGIN
l2 := (vx - wx)*(vx - wx) + (vy - wy)*(vy - wy);
IF l2 = 0 THEN
RETURN sqrt((vx - px)*(vx - px) + (vy - py)*(vy - py));
ELSE
t := ((px - vx) * (wx - vx) + (py - vy) * (wy - vy)) / l2;
t := GREATEST(0, LEAST(1, t));
nx := vx + t * (wx - vx);
ny := vy + t * (wy - vy);
RETURN sqrt((nx - px)*(nx - px) + (ny - py)*(ny - py));
END IF;
END;
$$ LANGUAGE plpgsql;
其他回答
在f#中,点c到a和b之间的线段的距离为:
let pointToLineSegmentDistance (a: Vector, b: Vector) (c: Vector) =
let d = b - a
let s = d.Length
let lambda = (c - a) * d / s
let p = (lambda |> max 0.0 |> min s) * d / s
(a + p - c).Length
向量d沿着线段从a指向b。d/s与c-a的点积给出了无限直线与点c之间最接近点的参数。使用min和max函数将该参数钳制到范围0..s,使该点位于a和b之间。最后,a+p-c的长度是c到线段上最近点的距离。
使用示例:
pointToLineSegmentDistance (Vector(0.0, 0.0), Vector(1.0, 0.0)) (Vector(-1.0, 1.0))
省道和颤振的解决方法:
import 'dart:math' as math;
class Utils {
static double shortestDistance(Point p1, Point p2, Point p3){
double px = p2.x - p1.x;
double py = p2.y - p1.y;
double temp = (px*px) + (py*py);
double u = ((p3.x - p1.x)*px + (p3.y - p1.y)* py) /temp;
if(u>1){
u=1;
}
else if(u<0){
u=0;
}
double x = p1.x + u*px;
double y = p1.y + u*py;
double dx = x - p3.x;
double dy = y - p3.y;
double dist = math.sqrt(dx*dx+dy*dy);
return dist;
}
}
class Point {
double x;
double y;
Point(this.x, this.y);
}
请参见以下网站中的Matlab几何工具箱: http://people.sc.fsu.edu/~jburkardt/m_src/geometry/geometry.html
按Ctrl +f,输入“segment”,查找线段相关函数。函数“segment_point_dist_2d.”和segment_point_dist_3d。M "是你需要的。
几何代码有C版本、c++版本、FORTRAN77版本、FORTRAN90版本和MATLAB版本。
现在我的解决方案...... (Javascript)
这是非常快的,因为我试图避免任何数学。战俘的功能。
如你所见,在函数的最后,我得到了直线的距离。
代码来自lib http://www.draw2d.org/graphiti/jsdoc/#!/例子
/**
* Static util function to determine is a point(px,py) on the line(x1,y1,x2,y2)
* A simple hit test.
*
* @return {boolean}
* @static
* @private
* @param {Number} coronaWidth the accepted corona for the hit test
* @param {Number} X1 x coordinate of the start point of the line
* @param {Number} Y1 y coordinate of the start point of the line
* @param {Number} X2 x coordinate of the end point of the line
* @param {Number} Y2 y coordinate of the end point of the line
* @param {Number} px x coordinate of the point to test
* @param {Number} py y coordinate of the point to test
**/
graphiti.shape.basic.Line.hit= function( coronaWidth, X1, Y1, X2, Y2, px, py)
{
// Adjust vectors relative to X1,Y1
// X2,Y2 becomes relative vector from X1,Y1 to end of segment
X2 -= X1;
Y2 -= Y1;
// px,py becomes relative vector from X1,Y1 to test point
px -= X1;
py -= Y1;
var dotprod = px * X2 + py * Y2;
var projlenSq;
if (dotprod <= 0.0) {
// px,py is on the side of X1,Y1 away from X2,Y2
// distance to segment is length of px,py vector
// "length of its (clipped) projection" is now 0.0
projlenSq = 0.0;
} else {
// switch to backwards vectors relative to X2,Y2
// X2,Y2 are already the negative of X1,Y1=>X2,Y2
// to get px,py to be the negative of px,py=>X2,Y2
// the dot product of two negated vectors is the same
// as the dot product of the two normal vectors
px = X2 - px;
py = Y2 - py;
dotprod = px * X2 + py * Y2;
if (dotprod <= 0.0) {
// px,py is on the side of X2,Y2 away from X1,Y1
// distance to segment is length of (backwards) px,py vector
// "length of its (clipped) projection" is now 0.0
projlenSq = 0.0;
} else {
// px,py is between X1,Y1 and X2,Y2
// dotprod is the length of the px,py vector
// projected on the X2,Y2=>X1,Y1 vector times the
// length of the X2,Y2=>X1,Y1 vector
projlenSq = dotprod * dotprod / (X2 * X2 + Y2 * Y2);
}
}
// Distance to line is now the length of the relative point
// vector minus the length of its projection onto the line
// (which is zero if the projection falls outside the range
// of the line segment).
var lenSq = px * px + py * py - projlenSq;
if (lenSq < 0) {
lenSq = 0;
}
return Math.sqrt(lenSq)<coronaWidth;
};
公认的答案行不通 (例如,0,0和(-10,2,10,2)之间的距离应为2)。
下面是工作代码:
def dist2line2(x,y,line):
x1,y1,x2,y2=line
vx = x1 - x
vy = y1 - y
ux = x2-x1
uy = y2-y1
length = ux * ux + uy * uy
det = (-vx * ux) + (-vy * uy) #//if this is < 0 or > length then its outside the line segment
if det < 0:
return (x1 - x)**2 + (y1 - y)**2
if det > length:
return (x2 - x)**2 + (y2 - y)**2
det = ux * vy - uy * vx
return det**2 / length
def dist2line(x,y,line): return math.sqrt(dist2line2(x,y,line))