我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。

编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。


当前回答

对于懒人来说,以下是我在Objective-C语言中移植@Grumdrig的解决方案:

CGFloat sqr(CGFloat x) { return x*x; }
CGFloat dist2(CGPoint v, CGPoint w) { return sqr(v.x - w.x) + sqr(v.y - w.y); }
CGFloat distanceToSegmentSquared(CGPoint p, CGPoint v, CGPoint w)
{
    CGFloat l2 = dist2(v, w);
    if (l2 == 0.0f) return dist2(p, v);

    CGFloat t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
    if (t < 0.0f) return dist2(p, v);
    if (t > 1.0f) return dist2(p, w);
    return dist2(p, CGPointMake(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y)));
}
CGFloat distanceToSegment(CGPoint point, CGPoint segmentPointV, CGPoint segmentPointW)
{
    return sqrtf(distanceToSegmentSquared(point, segmentPointV, segmentPointW));
}

其他回答

这里是与c++答案相同的东西,但移植到pascal。点参数的顺序已经改变,以适应我的代码,但还是一样的东西。

function Dot(const p1, p2: PointF): double;
begin
  Result := p1.x * p2.x + p1.y * p2.y;
end;
function SubPoint(const p1, p2: PointF): PointF;
begin
  result.x := p1.x - p2.x;
  result.y := p1.y - p2.y;
end;

function ShortestDistance2(const p,v,w : PointF) : double;
var
  l2,t : double;
  projection,tt: PointF;
begin
  // Return minimum distance between line segment vw and point p
  //l2 := length_squared(v, w);  // i.e. |w-v|^2 -  avoid a sqrt
  l2 := Distance(v,w);
  l2 := MPower(l2,2);
  if (l2 = 0.0) then begin
    result:= Distance(p, v);   // v == w case
    exit;
  end;
  // Consider the line extending the segment, parameterized as v + t (w - v).
  // We find projection of point p onto the line.
  // It falls where t = [(p-v) . (w-v)] / |w-v|^2
  t := Dot(SubPoint(p,v),SubPoint(w,v)) / l2;
  if (t < 0.0) then begin
    result := Distance(p, v);       // Beyond the 'v' end of the segment
    exit;
  end
  else if (t > 1.0) then begin
    result := Distance(p, w);  // Beyond the 'w' end of the segment
    exit;
  end;
  //projection := v + t * (w - v);  // Projection falls on the segment
  tt.x := v.x + t * (w.x - v.x);
  tt.y := v.y + t * (w.y - v.y);
  result := Distance(p, tt);
end;

快速实现http://paulbourke.net/geometry/pointlineplane/source.c

    static func magnitude(p1: CGPoint, p2: CGPoint) -> CGFloat {
        let vector = CGPoint(x: p2.x - p1.x, y: p2.y - p1.y)
        return sqrt(pow(vector.x, 2) + pow(vector.y, 2))
    }

    /// http://paulbourke.net/geometry/pointlineplane/
    /// http://paulbourke.net/geometry/pointlineplane/source.c
    static func pointDistanceToLine(point: CGPoint, lineStart: CGPoint, lineEnd: CGPoint) -> CGFloat? {

        let lineMag = magnitude(p1: lineEnd, p2: lineStart)
        let u = (((point.x - lineStart.x) * (lineEnd.x - lineStart.x)) +
                ((point.y - lineStart.y) * (lineEnd.y - lineStart.y))) /
                (lineMag * lineMag)

        if u < 0 || u > 1 {
            // closest point does not fall within the line segment
            return nil
        }

        let intersectionX = lineStart.x + u * (lineEnd.x - lineStart.x)
        let intersectionY = lineStart.y + u * (lineEnd.y - lineStart.y)

        return magnitude(p1: point, p2: CGPoint(x: intersectionX, y: intersectionY))
    }

这是一个为有限线段而做的实现,而不是像这里的大多数其他函数那样的无限线(这就是为什么我做这个)。

Paul Bourke的理论实施。

Python:

def dist(x1, y1, x2, y2, x3, y3): # x3,y3 is the point
    px = x2-x1
    py = y2-y1

    norm = px*px + py*py

    u =  ((x3 - x1) * px + (y3 - y1) * py) / float(norm)

    if u > 1:
        u = 1
    elif u < 0:
        u = 0

    x = x1 + u * px
    y = y1 + u * py

    dx = x - x3
    dy = y - y3

    # Note: If the actual distance does not matter,
    # if you only want to compare what this function
    # returns to other results of this function, you
    # can just return the squared distance instead
    # (i.e. remove the sqrt) to gain a little performance

    dist = (dx*dx + dy*dy)**.5

    return dist

AS3:

public static function segmentDistToPoint(segA:Point, segB:Point, p:Point):Number
{
    var p2:Point = new Point(segB.x - segA.x, segB.y - segA.y);
    var something:Number = p2.x*p2.x + p2.y*p2.y;
    var u:Number = ((p.x - segA.x) * p2.x + (p.y - segA.y) * p2.y) / something;

    if (u > 1)
        u = 1;
    else if (u < 0)
        u = 0;

    var x:Number = segA.x + u * p2.x;
    var y:Number = segA.y + u * p2.y;

    var dx:Number = x - p.x;
    var dy:Number = y - p.y;

    var dist:Number = Math.sqrt(dx*dx + dy*dy);

    return dist;
}

Java

private double shortestDistance(float x1,float y1,float x2,float y2,float x3,float y3)
    {
        float px=x2-x1;
        float py=y2-y1;
        float temp=(px*px)+(py*py);
        float u=((x3 - x1) * px + (y3 - y1) * py) / (temp);
        if(u>1){
            u=1;
        }
        else if(u<0){
            u=0;
        }
        float x = x1 + u * px;
        float y = y1 + u * py;

        float dx = x - x3;
        float dy = y - y3;
        double dist = Math.sqrt(dx*dx + dy*dy);
        return dist;

    }

Matlab代码,内置“自检”,如果他们调用函数没有参数:

function r = distPointToLineSegment( xy0, xy1, xyP )
% r = distPointToLineSegment( xy0, xy1, xyP )

if( nargin < 3 )
    selfTest();
    r=0;
else
    vx = xy0(1)-xyP(1);
    vy = xy0(2)-xyP(2);
    ux = xy1(1)-xy0(1);
    uy = xy1(2)-xy0(2);
    lenSqr= (ux*ux+uy*uy);
    detP= -vx*ux + -vy*uy;

    if( detP < 0 )
        r = norm(xy0-xyP,2);
    elseif( detP > lenSqr )
        r = norm(xy1-xyP,2);
    else
        r = abs(ux*vy-uy*vx)/sqrt(lenSqr);
    end
end


    function selfTest()
        %#ok<*NASGU>
        disp(['invalid args, distPointToLineSegment running (recursive)  self-test...']);

        ptA = [1;1]; ptB = [-1;-1];
        ptC = [1/2;1/2];  % on the line
        ptD = [-2;-1.5];  % too far from line segment
        ptE = [1/2;0];    % should be same as perpendicular distance to line
        ptF = [1.5;1.5];      % along the A-B but outside of the segment

        distCtoAB = distPointToLineSegment(ptA,ptB,ptC)
        distDtoAB = distPointToLineSegment(ptA,ptB,ptD)
        distEtoAB = distPointToLineSegment(ptA,ptB,ptE)
        distFtoAB = distPointToLineSegment(ptA,ptB,ptF)
        figure(1); clf;
        circle = @(x, y, r, c) rectangle('Position', [x-r, y-r, 2*r, 2*r], ...
            'Curvature', [1 1], 'EdgeColor', c);
        plot([ptA(1) ptB(1)],[ptA(2) ptB(2)],'r-x'); hold on;
        plot(ptC(1),ptC(2),'b+'); circle(ptC(1),ptC(2), 0.5e-1, 'b');
        plot(ptD(1),ptD(2),'g+'); circle(ptD(1),ptD(2), distDtoAB, 'g');
        plot(ptE(1),ptE(2),'k+'); circle(ptE(1),ptE(2), distEtoAB, 'k');
        plot(ptF(1),ptF(2),'m+'); circle(ptF(1),ptF(2), distFtoAB, 'm');
        hold off;
        axis([-3 3 -3 3]); axis equal;
    end

end

现在我的解决方案...... (Javascript)

这是非常快的,因为我试图避免任何数学。战俘的功能。

如你所见,在函数的最后,我得到了直线的距离。

代码来自lib http://www.draw2d.org/graphiti/jsdoc/#!/例子

/**
 * Static util function to determine is a point(px,py) on the line(x1,y1,x2,y2)
 * A simple hit test.
 * 
 * @return {boolean}
 * @static
 * @private
 * @param {Number} coronaWidth the accepted corona for the hit test
 * @param {Number} X1 x coordinate of the start point of the line
 * @param {Number} Y1 y coordinate of the start point of the line
 * @param {Number} X2 x coordinate of the end point of the line
 * @param {Number} Y2 y coordinate of the end point of the line
 * @param {Number} px x coordinate of the point to test
 * @param {Number} py y coordinate of the point to test
 **/
graphiti.shape.basic.Line.hit= function( coronaWidth, X1, Y1,  X2,  Y2, px, py)
{
  // Adjust vectors relative to X1,Y1
  // X2,Y2 becomes relative vector from X1,Y1 to end of segment
  X2 -= X1;
  Y2 -= Y1;
  // px,py becomes relative vector from X1,Y1 to test point
  px -= X1;
  py -= Y1;
  var dotprod = px * X2 + py * Y2;
  var projlenSq;
  if (dotprod <= 0.0) {
      // px,py is on the side of X1,Y1 away from X2,Y2
      // distance to segment is length of px,py vector
      // "length of its (clipped) projection" is now 0.0
      projlenSq = 0.0;
  } else {
      // switch to backwards vectors relative to X2,Y2
      // X2,Y2 are already the negative of X1,Y1=>X2,Y2
      // to get px,py to be the negative of px,py=>X2,Y2
      // the dot product of two negated vectors is the same
      // as the dot product of the two normal vectors
      px = X2 - px;
      py = Y2 - py;
      dotprod = px * X2 + py * Y2;
      if (dotprod <= 0.0) {
          // px,py is on the side of X2,Y2 away from X1,Y1
          // distance to segment is length of (backwards) px,py vector
          // "length of its (clipped) projection" is now 0.0
          projlenSq = 0.0;
      } else {
          // px,py is between X1,Y1 and X2,Y2
          // dotprod is the length of the px,py vector
          // projected on the X2,Y2=>X1,Y1 vector times the
          // length of the X2,Y2=>X1,Y1 vector
          projlenSq = dotprod * dotprod / (X2 * X2 + Y2 * Y2);
      }
  }
    // Distance to line is now the length of the relative point
    // vector minus the length of its projection onto the line
    // (which is zero if the projection falls outside the range
    //  of the line segment).
    var lenSq = px * px + py * py - projlenSq;
    if (lenSq < 0) {
        lenSq = 0;
    }
    return Math.sqrt(lenSq)<coronaWidth;
};