我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
当前回答
这是一个基于向量数学的;这个解决方案也适用于更高的维度,并报告交点(在线段上)。
def dist(x1,y1,x2,y2,px,py):
a = np.array([[x1,y1]]).T
b = np.array([[x2,y2]]).T
x = np.array([[px,py]]).T
tp = (np.dot(x.T, b) - np.dot(a.T, b)) / np.dot(b.T, b)
tp = tp[0][0]
tmp = x - (a + tp*b)
d = np.sqrt(np.dot(tmp.T,tmp)[0][0])
return d, a+tp*b
x1,y1=2.,2.
x2,y2=5.,5.
px,py=4.,1.
d, inters = dist(x1,y1, x2,y2, px,py)
print (d)
print (inters)
结果是
2.1213203435596424
[[2.5]
[2.5]]
这里解释了数学
https://brilliant.org/wiki/distance-between-point-and-line/
其他回答
我需要一个Godot (GDscript)的实现,所以我写了一个基于grumdrig接受的答案:
func minimum_distance(v: Vector2, w: Vector2, p: Vector2):
# Return minimum distance between line segment vw and point p
var l2: float = (v - w).length_squared() # i.e. |w-v|^2 - avoid a sqrt
if l2 == 0.0:
return p.distance_to(v) # v == w case
# Consider the line extending the segment, parameterized as v + t (w - v).
# We find projection of point p onto the line.
# It falls where t = [(p-v) . (w-v)] / |w-v|^2
# We clamp t from [0,1] to handle points outside the segment vw.
var t: float = max(0, min(1, (p - v).dot(w - v) / l2))
var projection: Vector2 = v + t * (w - v) # Projection falls on the segment
return p.distance_to(projection)
用Matlab直接实现Grumdrig
function ans=distP2S(px,py,vx,vy,wx,wy)
% [px py vx vy wx wy]
t=( (px-vx)*(wx-vx)+(py-vy)*(wy-vy) )/idist(vx,wx,vy,wy)^2;
[idist(px,vx,py,vy) idist(px,vx+t*(wx-vx),py,vy+t*(wy-vy)) idist(px,wx,py,wy) ];
ans(1+(t>0)+(t>1)); % <0 0<=t<=1 t>1
end
function d=idist(a,b,c,d)
d=abs(a-b+1i*(c-d));
end
2D坐标数组的Python Numpy实现:
import numpy as np
def dist2d(p1, p2, coords):
''' Distance from points to a finite line btwn p1 -> p2 '''
assert coords.ndim == 2 and coords.shape[1] == 2, 'coords is not 2 dim'
dp = p2 - p1
st = dp[0]**2 + dp[1]**2
u = ((coords[:, 0] - p1[0]) * dp[0] + (coords[:, 1] - p1[1]) * dp[1]) / st
u[u > 1.] = 1.
u[u < 0.] = 0.
dx = (p1[0] + u * dp[0]) - coords[:, 0]
dy = (p1[1] + u * dp[1]) - coords[:, 1]
return np.sqrt(dx**2 + dy**2)
# Usage:
p1 = np.array([0., 0.])
p2 = np.array([0., 10.])
# List of coordinates
coords = np.array(
[[0., 0.],
[5., 5.],
[10., 10.],
[20., 20.]
])
d = dist2d(p1, p2, coords)
# Single coordinate
coord = np.array([25., 25.])
d = dist2d(p1, p2, coord[np.newaxis, :])
对于懒人来说,以下是我在Objective-C语言中移植@Grumdrig的解决方案:
CGFloat sqr(CGFloat x) { return x*x; }
CGFloat dist2(CGPoint v, CGPoint w) { return sqr(v.x - w.x) + sqr(v.y - w.y); }
CGFloat distanceToSegmentSquared(CGPoint p, CGPoint v, CGPoint w)
{
CGFloat l2 = dist2(v, w);
if (l2 == 0.0f) return dist2(p, v);
CGFloat t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
if (t < 0.0f) return dist2(p, v);
if (t > 1.0f) return dist2(p, w);
return dist2(p, CGPointMake(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y)));
}
CGFloat distanceToSegment(CGPoint point, CGPoint segmentPointV, CGPoint segmentPointW)
{
return sqrtf(distanceToSegmentSquared(point, segmentPointV, segmentPointW));
}
本想在GLSL中这样做,但如果可能的话,最好避免所有这些条件。使用clamp()可以避免两种端点情况:
// find closest point to P on line segment AB:
vec3 closest_point_on_line_segment(in vec3 P, in vec3 A, in vec3 B) {
vec3 AP = P - A, AB = B - A;
float l = dot(AB, AB);
if (l <= 0.0000001) return A; // A and B are practically the same
return AP - AB*clamp(dot(AP, AB)/l, 0.0, 1.0); // do the projection
}
如果您可以确定A和B彼此不会非常接近,则可以简化为删除If()。事实上,即使A和B是相同的,我的GPU仍然给出了这个无条件版本的正确结果(但这是使用pre-OpenGL 4.1,其中GLSL除零是未定义的):
// find closest point to P on line segment AB:
vec3 closest_point_on_line_segment(in vec3 P, in vec3 A, in vec3 B) {
vec3 AP = P - A, AB = B - A;
return AP - AB*clamp(dot(AP, AB)/dot(AB, AB), 0.0, 1.0);
}
计算距离是很简单的——GLSL提供了一个distance()函数,你可以在这个最近的点和P。
灵感来自Iñigo Quilez的胶囊距离函数代码