我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。
编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。
当前回答
在javascript中使用几何:
var a = { x:20, y:20};//start segment
var b = { x:40, y:30};//end segment
var c = { x:37, y:14};//point
// magnitude from a to c
var ac = Math.sqrt( Math.pow( ( a.x - c.x ), 2 ) + Math.pow( ( a.y - c.y ), 2) );
// magnitude from b to c
var bc = Math.sqrt( Math.pow( ( b.x - c.x ), 2 ) + Math.pow( ( b.y - c.y ), 2 ) );
// magnitude from a to b (base)
var ab = Math.sqrt( Math.pow( ( a.x - b.x ), 2 ) + Math.pow( ( a.y - b.y ), 2 ) );
// perimeter of triangle
var p = ac + bc + ab;
// area of the triangle
var area = Math.sqrt( p/2 * ( p/2 - ac) * ( p/2 - bc ) * ( p/2 - ab ) );
// height of the triangle = distance
var h = ( area * 2 ) / ab;
console.log ("height: " + h);
其他回答
Grumdrig的c++ /JavaScript实现对我来说非常有用,所以我提供了我正在使用的Python直接端口。完整的代码在这里。
class Point(object):
def __init__(self, x, y):
self.x = float(x)
self.y = float(y)
def square(x):
return x * x
def distance_squared(v, w):
return square(v.x - w.x) + square(v.y - w.y)
def distance_point_segment_squared(p, v, w):
# Segment length squared, |w-v|^2
d2 = distance_squared(v, w)
if d2 == 0:
# v == w, return distance to v
return distance_squared(p, v)
# Consider the line extending the segment, parameterized as v + t (w - v).
# We find projection of point p onto the line.
# It falls where t = [(p-v) . (w-v)] / |w-v|^2
t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / d2;
if t < 0:
# Beyond v end of the segment
return distance_squared(p, v)
elif t > 1.0:
# Beyond w end of the segment
return distance_squared(p, w)
else:
# Projection falls on the segment.
proj = Point(v.x + t * (w.x - v.x), v.y + t * (w.y - v.y))
# print proj.x, proj.y
return distance_squared(p, proj)
这是一个为有限线段而做的实现,而不是像这里的大多数其他函数那样的无限线(这就是为什么我做这个)。
Paul Bourke的理论实施。
Python:
def dist(x1, y1, x2, y2, x3, y3): # x3,y3 is the point
px = x2-x1
py = y2-y1
norm = px*px + py*py
u = ((x3 - x1) * px + (y3 - y1) * py) / float(norm)
if u > 1:
u = 1
elif u < 0:
u = 0
x = x1 + u * px
y = y1 + u * py
dx = x - x3
dy = y - y3
# Note: If the actual distance does not matter,
# if you only want to compare what this function
# returns to other results of this function, you
# can just return the squared distance instead
# (i.e. remove the sqrt) to gain a little performance
dist = (dx*dx + dy*dy)**.5
return dist
AS3:
public static function segmentDistToPoint(segA:Point, segB:Point, p:Point):Number
{
var p2:Point = new Point(segB.x - segA.x, segB.y - segA.y);
var something:Number = p2.x*p2.x + p2.y*p2.y;
var u:Number = ((p.x - segA.x) * p2.x + (p.y - segA.y) * p2.y) / something;
if (u > 1)
u = 1;
else if (u < 0)
u = 0;
var x:Number = segA.x + u * p2.x;
var y:Number = segA.y + u * p2.y;
var dx:Number = x - p.x;
var dy:Number = y - p.y;
var dist:Number = Math.sqrt(dx*dx + dy*dy);
return dist;
}
Java
private double shortestDistance(float x1,float y1,float x2,float y2,float x3,float y3)
{
float px=x2-x1;
float py=y2-y1;
float temp=(px*px)+(py*py);
float u=((x3 - x1) * px + (y3 - y1) * py) / (temp);
if(u>1){
u=1;
}
else if(u<0){
u=0;
}
float x = x1 + u * px;
float y = y1 + u * py;
float dx = x - x3;
float dy = y - y3;
double dist = Math.sqrt(dx*dx + dy*dy);
return dist;
}
在javascript中使用几何:
var a = { x:20, y:20};//start segment
var b = { x:40, y:30};//end segment
var c = { x:37, y:14};//point
// magnitude from a to c
var ac = Math.sqrt( Math.pow( ( a.x - c.x ), 2 ) + Math.pow( ( a.y - c.y ), 2) );
// magnitude from b to c
var bc = Math.sqrt( Math.pow( ( b.x - c.x ), 2 ) + Math.pow( ( b.y - c.y ), 2 ) );
// magnitude from a to b (base)
var ab = Math.sqrt( Math.pow( ( a.x - b.x ), 2 ) + Math.pow( ( a.y - b.y ), 2 ) );
// perimeter of triangle
var p = ac + bc + ab;
// area of the triangle
var area = Math.sqrt( p/2 * ( p/2 - ac) * ( p/2 - bc ) * ( p/2 - ab ) );
// height of the triangle = distance
var h = ( area * 2 ) / ab;
console.log ("height: " + h);
2D坐标数组的Python Numpy实现:
import numpy as np
def dist2d(p1, p2, coords):
''' Distance from points to a finite line btwn p1 -> p2 '''
assert coords.ndim == 2 and coords.shape[1] == 2, 'coords is not 2 dim'
dp = p2 - p1
st = dp[0]**2 + dp[1]**2
u = ((coords[:, 0] - p1[0]) * dp[0] + (coords[:, 1] - p1[1]) * dp[1]) / st
u[u > 1.] = 1.
u[u < 0.] = 0.
dx = (p1[0] + u * dp[0]) - coords[:, 0]
dy = (p1[1] + u * dp[1]) - coords[:, 1]
return np.sqrt(dx**2 + dy**2)
# Usage:
p1 = np.array([0., 0.])
p2 = np.array([0., 10.])
# List of coordinates
coords = np.array(
[[0., 0.],
[5., 5.],
[10., 10.],
[20., 20.]
])
d = dist2d(p1, p2, coords)
# Single coordinate
coord = np.array([25., 25.])
d = dist2d(p1, p2, coord[np.newaxis, :])
本想在GLSL中这样做,但如果可能的话,最好避免所有这些条件。使用clamp()可以避免两种端点情况:
// find closest point to P on line segment AB:
vec3 closest_point_on_line_segment(in vec3 P, in vec3 A, in vec3 B) {
vec3 AP = P - A, AB = B - A;
float l = dot(AB, AB);
if (l <= 0.0000001) return A; // A and B are practically the same
return AP - AB*clamp(dot(AP, AB)/l, 0.0, 1.0); // do the projection
}
如果您可以确定A和B彼此不会非常接近,则可以简化为删除If()。事实上,即使A和B是相同的,我的GPU仍然给出了这个无条件版本的正确结果(但这是使用pre-OpenGL 4.1,其中GLSL除零是未定义的):
// find closest point to P on line segment AB:
vec3 closest_point_on_line_segment(in vec3 P, in vec3 A, in vec3 B) {
vec3 AP = P - A, AB = B - A;
return AP - AB*clamp(dot(AP, AB)/dot(AB, AB), 0.0, 1.0);
}
计算距离是很简单的——GLSL提供了一个distance()函数,你可以在这个最近的点和P。
灵感来自Iñigo Quilez的胶囊距离函数代码