我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。

编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。


当前回答

在javascript中使用几何:

var a = { x:20, y:20};//start segment    
var b = { x:40, y:30};//end segment   
var c = { x:37, y:14};//point   

// magnitude from a to c    
var ac = Math.sqrt( Math.pow( ( a.x - c.x ), 2 ) + Math.pow( ( a.y - c.y ), 2) );    
// magnitude from b to c   
var bc = Math.sqrt( Math.pow( ( b.x - c.x ), 2 ) + Math.pow( ( b.y - c.y ), 2 ) );    
// magnitude from a to b (base)     
var ab = Math.sqrt( Math.pow( ( a.x - b.x ), 2 ) + Math.pow( ( a.y - b.y ), 2 ) );    
 // perimeter of triangle     
var p = ac + bc + ab;    
 // area of the triangle    
var area = Math.sqrt( p/2 * ( p/2 - ac) * ( p/2 - bc ) * ( p/2 - ab ) );    
 // height of the triangle = distance    
var h = ( area * 2 ) / ab;    
console.log ("height: " + h);

其他回答

在我自己的问题线程如何计算在C, c# / .NET 2.0或Java的所有情况下一个点和线段之间的最短2D距离?当我找到一个c#的答案时,我被要求把它放在这里:所以它是从http://www.topcoder.com/tc?d1=tutorials&d2=geometry1&module=Static修改的:

//Compute the dot product AB . BC
private double DotProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] BC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    BC[0] = pointC[0] - pointB[0];
    BC[1] = pointC[1] - pointB[1];
    double dot = AB[0] * BC[0] + AB[1] * BC[1];

    return dot;
}

//Compute the cross product AB x AC
private double CrossProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] AC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    AC[0] = pointC[0] - pointA[0];
    AC[1] = pointC[1] - pointA[1];
    double cross = AB[0] * AC[1] - AB[1] * AC[0];

    return cross;
}

//Compute the distance from A to B
double Distance(double[] pointA, double[] pointB)
{
    double d1 = pointA[0] - pointB[0];
    double d2 = pointA[1] - pointB[1];

    return Math.Sqrt(d1 * d1 + d2 * d2);
}

//Compute the distance from AB to C
//if isSegment is true, AB is a segment, not a line.
double LineToPointDistance2D(double[] pointA, double[] pointB, double[] pointC, 
    bool isSegment)
{
    double dist = CrossProduct(pointA, pointB, pointC) / Distance(pointA, pointB);
    if (isSegment)
    {
        double dot1 = DotProduct(pointA, pointB, pointC);
        if (dot1 > 0) 
            return Distance(pointB, pointC);

        double dot2 = DotProduct(pointB, pointA, pointC);
        if (dot2 > 0) 
            return Distance(pointA, pointC);
    }
    return Math.Abs(dist);
} 

我不是要回答问题,而是要问问题,所以我希望我不会因为某些原因而得到数百万张反对票,而是批评。我只是想(并被鼓励)分享其他人的想法,因为这个帖子中的解决方案要么是用一些奇异的语言(Fortran, Mathematica),要么被某人标记为错误。对我来说唯一有用的(由Grumdrig编写)是用c++编写的,没有人标记它有错误。但是它缺少被调用的方法(dot等)。

Lua: 查找线段(不是整条线)与点之间的最小距离

function solveLinearEquation(A1,B1,C1,A2,B2,C2)
--it is the implitaion of a method of solving linear equations in x and y
  local f1 = B1*C2 -B2*C1
  local f2 = A2*C1-A1*C2
  local f3 = A1*B2 -A2*B1
  return {x= f1/f3, y= f2/f3}
end


function pointLiesOnLine(x,y,x1,y1,x2,y2)
  local dx1 = x-x1
  local  dy1 = y-y1
  local dx2 = x-x2
  local  dy2 = y-y2
  local crossProduct = dy1*dx2 -dx1*dy2

if crossProduct ~= 0  then  return  false
else
  if ((x1>=x) and (x>=x2)) or ((x2>=x) and (x>=x1)) then
    if ((y1>=y) and (y>=y2)) or ((y2>=y) and (y>=y1)) then
      return true
    else return false end
  else  return false end
end
end


function dist(x1,y1,x2,y2)
  local dx = x1-x2
  local dy = y1-y2
  return math.sqrt(dx*dx + dy* dy)
 end


function findMinDistBetnPointAndLine(x1,y1,x2,y2,x3,y3)
-- finds the min  distance between (x3,y3) and line (x1,y2)--(x2,y2)
   local A2,B2,C2,A1,B1,C1
   local dx = y2-y1
   local dy = x2-x1
   if dx == 0 then A2=1 B2=0 C2=-x3 A1=0 B1=1 C1=-y1 
   elseif dy == 0 then A2=0 B2=1 C2=-y3 A1=1 B1=0 C1=-x1
   else
      local m1 = dy/dx
      local m2 = -1/m1
      A2=m2 B2=-1 C2=y3-m2*x3 A1=m1 B1=-1 C1=y1-m1*x1
   end
 local intsecPoint= solveLinearEquation(A1,B1,C1,A2,B2,C2)
if pointLiesOnLine(intsecPoint.x, intsecPoint.y,x1,y1,x2,y2) then
   return dist(intsecPoint.x, intsecPoint.y, x3,y3)
 else
   return math.min(dist(x3,y3,x1,y1),dist(x3,y3,x2,y2))
end
end

在数学

它使用线段的参数描述,并将点投影到线段定义的直线中。当参数在线段内从0到1时,如果投影在这个范围之外,我们计算到相应端点的距离,而不是法线到线段的直线。

Clear["Global`*"];
 distance[{start_, end_}, pt_] := 
   Module[{param},
   param = ((pt - start).(end - start))/Norm[end - start]^2; (*parameter. the "."
                                                       here means vector product*)

   Which[
    param < 0, EuclideanDistance[start, pt],                 (*If outside bounds*)
    param > 1, EuclideanDistance[end, pt],
    True, EuclideanDistance[pt, start + param (end - start)] (*Normal distance*)
    ]
   ];  

策划的结果:

Plot3D[distance[{{0, 0}, {1, 0}}, {xp, yp}], {xp, -1, 2}, {yp, -1, 2}]

画出比截断距离更近的点:

等高线图:

用Matlab直接实现Grumdrig

function ans=distP2S(px,py,vx,vy,wx,wy)
% [px py vx vy wx wy]
  t=( (px-vx)*(wx-vx)+(py-vy)*(wy-vy) )/idist(vx,wx,vy,wy)^2;
  [idist(px,vx,py,vy) idist(px,vx+t*(wx-vx),py,vy+t*(wy-vy)) idist(px,wx,py,wy) ];
  ans(1+(t>0)+(t>1)); % <0 0<=t<=1 t>1     
 end

function d=idist(a,b,c,d)
 d=abs(a-b+1i*(c-d));
end

2D坐标数组的Python Numpy实现:

import numpy as np


def dist2d(p1, p2, coords):
    ''' Distance from points to a finite line btwn p1 -> p2 '''
    assert coords.ndim == 2 and coords.shape[1] == 2, 'coords is not 2 dim'
    dp = p2 - p1
    st = dp[0]**2 + dp[1]**2
    u = ((coords[:, 0] - p1[0]) * dp[0] + (coords[:, 1] - p1[1]) * dp[1]) / st

    u[u > 1.] = 1.
    u[u < 0.] = 0.

    dx = (p1[0] + u * dp[0]) - coords[:, 0]
    dy = (p1[1] + u * dp[1]) - coords[:, 1]

    return np.sqrt(dx**2 + dy**2)


# Usage:
p1 = np.array([0., 0.])
p2 = np.array([0., 10.])

# List of coordinates
coords = np.array(
    [[0., 0.],
     [5., 5.],
     [10., 10.],
     [20., 20.]
     ])

d = dist2d(p1, p2, coords)

# Single coordinate
coord = np.array([25., 25.])
d = dist2d(p1, p2, coord[np.newaxis, :])