我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。

编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。


当前回答

Lua解决方案

-- distance from point (px, py) to line segment (x1, y1, x2, y2)
function distPointToLine(px,py,x1,y1,x2,y2) -- point, start and end of the segment
    local dx,dy = x2-x1,y2-y1
    local length = math.sqrt(dx*dx+dy*dy)
    dx,dy = dx/length,dy/length -- normalization
    local p = dx*(px-x1)+dy*(py-y1)
    if p < 0 then
        dx,dy = px-x1,py-y1
        return math.sqrt(dx*dx+dy*dy), x1, y1 -- distance, nearest point
    elseif p > length then
        dx,dy = px-x2,py-y2
        return math.sqrt(dx*dx+dy*dy), x2, y2 -- distance, nearest point
    end
    return math.abs(dy*(px-x1)-dx*(py-y1)), x1+dx*p, y1+dy*p -- distance, nearest point
end

对于折线(有两条以上线段的线):

-- if the (poly-)line has several segments, just iterate through all of them:
function nearest_sector_in_line (x, y, line)
    local x1, y1, x2, y2, min_dist
    local ax,ay = line[1], line[2]
    for j = 3, #line-1, 2 do
        local bx,by = line[j], line[j+1]
        local dist = distPointToLine(x,y,ax,ay,bx,by)
        if not min_dist or dist < min_dist then
            min_dist = dist
            x1, y1, x2, y2 = ax,ay,bx,by
        end
        ax, ay = bx, by
    end
    return x1, y1, x2, y2
end

例子:

-- call it:
local x1, y1, x2, y2 = nearest_sector_in_line (7, 4, {0,0, 10,0, 10,10, 0,10})

其他回答

在我自己的问题线程如何计算在C, c# / .NET 2.0或Java的所有情况下一个点和线段之间的最短2D距离?当我找到一个c#的答案时,我被要求把它放在这里:所以它是从http://www.topcoder.com/tc?d1=tutorials&d2=geometry1&module=Static修改的:

//Compute the dot product AB . BC
private double DotProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] BC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    BC[0] = pointC[0] - pointB[0];
    BC[1] = pointC[1] - pointB[1];
    double dot = AB[0] * BC[0] + AB[1] * BC[1];

    return dot;
}

//Compute the cross product AB x AC
private double CrossProduct(double[] pointA, double[] pointB, double[] pointC)
{
    double[] AB = new double[2];
    double[] AC = new double[2];
    AB[0] = pointB[0] - pointA[0];
    AB[1] = pointB[1] - pointA[1];
    AC[0] = pointC[0] - pointA[0];
    AC[1] = pointC[1] - pointA[1];
    double cross = AB[0] * AC[1] - AB[1] * AC[0];

    return cross;
}

//Compute the distance from A to B
double Distance(double[] pointA, double[] pointB)
{
    double d1 = pointA[0] - pointB[0];
    double d2 = pointA[1] - pointB[1];

    return Math.Sqrt(d1 * d1 + d2 * d2);
}

//Compute the distance from AB to C
//if isSegment is true, AB is a segment, not a line.
double LineToPointDistance2D(double[] pointA, double[] pointB, double[] pointC, 
    bool isSegment)
{
    double dist = CrossProduct(pointA, pointB, pointC) / Distance(pointA, pointB);
    if (isSegment)
    {
        double dot1 = DotProduct(pointA, pointB, pointC);
        if (dot1 > 0) 
            return Distance(pointB, pointC);

        double dot2 = DotProduct(pointB, pointA, pointC);
        if (dot2 > 0) 
            return Distance(pointA, pointC);
    }
    return Math.Abs(dist);
} 

我不是要回答问题,而是要问问题,所以我希望我不会因为某些原因而得到数百万张反对票,而是批评。我只是想(并被鼓励)分享其他人的想法,因为这个帖子中的解决方案要么是用一些奇异的语言(Fortran, Mathematica),要么被某人标记为错误。对我来说唯一有用的(由Grumdrig编写)是用c++编写的,没有人标记它有错误。但是它缺少被调用的方法(dot等)。

在f#中,点c到a和b之间的线段的距离为:

let pointToLineSegmentDistance (a: Vector, b: Vector) (c: Vector) =
  let d = b - a
  let s = d.Length
  let lambda = (c - a) * d / s
  let p = (lambda |> max 0.0 |> min s) * d / s
  (a + p - c).Length

向量d沿着线段从a指向b。d/s与c-a的点积给出了无限直线与点c之间最接近点的参数。使用min和max函数将该参数钳制到范围0..s,使该点位于a和b之间。最后,a+p-c的长度是c到线段上最近点的距离。

使用示例:

pointToLineSegmentDistance (Vector(0.0, 0.0), Vector(1.0, 0.0)) (Vector(-1.0, 1.0))

在javascript中使用几何:

var a = { x:20, y:20};//start segment    
var b = { x:40, y:30};//end segment   
var c = { x:37, y:14};//point   

// magnitude from a to c    
var ac = Math.sqrt( Math.pow( ( a.x - c.x ), 2 ) + Math.pow( ( a.y - c.y ), 2) );    
// magnitude from b to c   
var bc = Math.sqrt( Math.pow( ( b.x - c.x ), 2 ) + Math.pow( ( b.y - c.y ), 2 ) );    
// magnitude from a to b (base)     
var ab = Math.sqrt( Math.pow( ( a.x - b.x ), 2 ) + Math.pow( ( a.y - b.y ), 2 ) );    
 // perimeter of triangle     
var p = ac + bc + ab;    
 // area of the triangle    
var area = Math.sqrt( p/2 * ( p/2 - ac) * ( p/2 - bc ) * ( p/2 - ab ) );    
 // height of the triangle = distance    
var h = ( area * 2 ) / ab;    
console.log ("height: " + h);

这里没有看到Java实现,所以我将Javascript函数从接受的答案转换为Java代码:

static double sqr(double x) {
    return x * x;
}
static double dist2(DoublePoint v, DoublePoint w) {
    return sqr(v.x - w.x) + sqr(v.y - w.y);
}
static double distToSegmentSquared(DoublePoint p, DoublePoint v, DoublePoint w) {
    double l2 = dist2(v, w);
    if (l2 == 0) return dist2(p, v);
    double t = ((p.x - v.x) * (w.x - v.x) + (p.y - v.y) * (w.y - v.y)) / l2;
    if (t < 0) return dist2(p, v);
    if (t > 1) return dist2(p, w);
    return dist2(p, new DoublePoint(
            v.x + t * (w.x - v.x),
            v.y + t * (w.y - v.y)
    ));
}
static double distToSegment(DoublePoint p, DoublePoint v, DoublePoint w) {
    return Math.sqrt(distToSegmentSquared(p, v, w));
}
static class DoublePoint {
    public double x;
    public double y;

    public DoublePoint(double x, double y) {
        this.x = x;
        this.y = y;
    }
}

忍不住用python来编码:)

from math import sqrt, fabs
def pdis(a, b, c):
    t = b[0]-a[0], b[1]-a[1]           # Vector ab
    dd = sqrt(t[0]**2+t[1]**2)         # Length of ab
    t = t[0]/dd, t[1]/dd               # unit vector of ab
    n = -t[1], t[0]                    # normal unit vector to ab
    ac = c[0]-a[0], c[1]-a[1]          # vector ac
    return fabs(ac[0]*n[0]+ac[1]*n[1]) # Projection of ac to n (the minimum distance)

print pdis((1,1), (2,2), (2,0))        # Example (answer is 1.414)

fortran也是一样:)

real function pdis(a, b, c)
    real, dimension(0:1), intent(in) :: a, b, c
    real, dimension(0:1) :: t, n, ac
    real :: dd
    t = b - a                          ! Vector ab
    dd = sqrt(t(0)**2+t(1)**2)         ! Length of ab
    t = t/dd                           ! unit vector of ab
    n = (/-t(1), t(0)/)                ! normal unit vector to ab
    ac = c - a                         ! vector ac
    pdis = abs(ac(0)*n(0)+ac(1)*n(1))  ! Projection of ac to n (the minimum distance)
end function pdis


program test
    print *, pdis((/1.0,1.0/), (/2.0,2.0/), (/2.0,0.0/))   ! Example (answer is 1.414)
end program test