我需要一个基本函数来求点到线段的最短距离。你可以随意用任何你想要的语言来编写解决方案;我可以把它翻译成什么我正在使用(Javascript)。

编辑:线段由两个端点定义。线段AB由两点A (x1,y1)和B (x2,y2)定义。我要求的是这条线段到点C (x3,y3)的距离。我的几何技能生疏了,所以我看到的例子让我很困惑,我很遗憾地承认。


当前回答

Lua解决方案

-- distance from point (px, py) to line segment (x1, y1, x2, y2)
function distPointToLine(px,py,x1,y1,x2,y2) -- point, start and end of the segment
    local dx,dy = x2-x1,y2-y1
    local length = math.sqrt(dx*dx+dy*dy)
    dx,dy = dx/length,dy/length -- normalization
    local p = dx*(px-x1)+dy*(py-y1)
    if p < 0 then
        dx,dy = px-x1,py-y1
        return math.sqrt(dx*dx+dy*dy), x1, y1 -- distance, nearest point
    elseif p > length then
        dx,dy = px-x2,py-y2
        return math.sqrt(dx*dx+dy*dy), x2, y2 -- distance, nearest point
    end
    return math.abs(dy*(px-x1)-dx*(py-y1)), x1+dx*p, y1+dy*p -- distance, nearest point
end

对于折线(有两条以上线段的线):

-- if the (poly-)line has several segments, just iterate through all of them:
function nearest_sector_in_line (x, y, line)
    local x1, y1, x2, y2, min_dist
    local ax,ay = line[1], line[2]
    for j = 3, #line-1, 2 do
        local bx,by = line[j], line[j+1]
        local dist = distPointToLine(x,y,ax,ay,bx,by)
        if not min_dist or dist < min_dist then
            min_dist = dist
            x1, y1, x2, y2 = ax,ay,bx,by
        end
        ax, ay = bx, by
    end
    return x1, y1, x2, y2
end

例子:

-- call it:
local x1, y1, x2, y2 = nearest_sector_in_line (7, 4, {0,0, 10,0, 10,10, 0,10})

其他回答

在数学

它使用线段的参数描述,并将点投影到线段定义的直线中。当参数在线段内从0到1时,如果投影在这个范围之外,我们计算到相应端点的距离,而不是法线到线段的直线。

Clear["Global`*"];
 distance[{start_, end_}, pt_] := 
   Module[{param},
   param = ((pt - start).(end - start))/Norm[end - start]^2; (*parameter. the "."
                                                       here means vector product*)

   Which[
    param < 0, EuclideanDistance[start, pt],                 (*If outside bounds*)
    param > 1, EuclideanDistance[end, pt],
    True, EuclideanDistance[pt, start + param (end - start)] (*Normal distance*)
    ]
   ];  

策划的结果:

Plot3D[distance[{{0, 0}, {1, 0}}, {xp, yp}], {xp, -1, 2}, {yp, -1, 2}]

画出比截断距离更近的点:

等高线图:

C#

改编自@Grumdrig

public static double MinimumDistanceToLineSegment(this Point p,
    Line line)
{
    var v = line.StartPoint;
    var w = line.EndPoint;

    double lengthSquared = DistanceSquared(v, w);

    if (lengthSquared == 0.0)
        return Distance(p, v);

    double t = Math.Max(0, Math.Min(1, DotProduct(p - v, w - v) / lengthSquared));
    var projection = v + t * (w - v);

    return Distance(p, projection);
}

public static double Distance(Point a, Point b)
{
    return Math.Sqrt(DistanceSquared(a, b));
}

public static double DistanceSquared(Point a, Point b)
{
    var d = a - b;
    return DotProduct(d, d);
}

public static double DotProduct(Point a, Point b)
{
    return (a.X * b.X) + (a.Y * b.Y);
}

以下是Grumdrig解决方案的一个更完整的说明。这个版本还返回最近的点本身。

#include "stdio.h"
#include "math.h"

class Vec2
{
public:
    float _x;
    float _y;

    Vec2()
    {
        _x = 0;
        _y = 0;
    }

    Vec2( const float x, const float y )
    {
        _x = x;
        _y = y;
    }

    Vec2 operator+( const Vec2 &v ) const
    {
        return Vec2( this->_x + v._x, this->_y + v._y );
    }

    Vec2 operator-( const Vec2 &v ) const
    {
        return Vec2( this->_x - v._x, this->_y - v._y );
    }

    Vec2 operator*( const float f ) const
    {
        return Vec2( this->_x * f, this->_y * f );
    }

    float DistanceToSquared( const Vec2 p ) const
    {
        const float dX = p._x - this->_x;
        const float dY = p._y - this->_y;

        return dX * dX + dY * dY;
    }

    float DistanceTo( const Vec2 p ) const
    {
        return sqrt( this->DistanceToSquared( p ) );
    }

    float DotProduct( const Vec2 p ) const
    {
        return this->_x * p._x + this->_y * p._y;
    }
};

// return minimum distance between line segment vw and point p, and the closest point on the line segment, q
float DistanceFromLineSegmentToPoint( const Vec2 v, const Vec2 w, const Vec2 p, Vec2 * const q )
{
    const float distSq = v.DistanceToSquared( w ); // i.e. |w-v|^2 ... avoid a sqrt
    if ( distSq == 0.0 )
    {
        // v == w case
        (*q) = v;

        return v.DistanceTo( p );
    }

    // consider the line extending the segment, parameterized as v + t (w - v)
    // we find projection of point p onto the line
    // it falls where t = [(p-v) . (w-v)] / |w-v|^2

    const float t = ( p - v ).DotProduct( w - v ) / distSq;
    if ( t < 0.0 )
    {
        // beyond the v end of the segment
        (*q) = v;

        return v.DistanceTo( p );
    }
    else if ( t > 1.0 )
    {
        // beyond the w end of the segment
        (*q) = w;

        return w.DistanceTo( p );
    }

    // projection falls on the segment
    const Vec2 projection = v + ( ( w - v ) * t );

    (*q) = projection;

    return p.DistanceTo( projection );
}

float DistanceFromLineSegmentToPoint( float segmentX1, float segmentY1, float segmentX2, float segmentY2, float pX, float pY, float *qX, float *qY )
{
    Vec2 q;

    float distance = DistanceFromLineSegmentToPoint( Vec2( segmentX1, segmentY1 ), Vec2( segmentX2, segmentY2 ), Vec2( pX, pY ), &q );

    (*qX) = q._x;
    (*qY) = q._y;

    return distance;
}

void TestDistanceFromLineSegmentToPoint( float segmentX1, float segmentY1, float segmentX2, float segmentY2, float pX, float pY )
{
    float qX;
    float qY;
    float d = DistanceFromLineSegmentToPoint( segmentX1, segmentY1, segmentX2, segmentY2, pX, pY, &qX, &qY );
    printf( "line segment = ( ( %f, %f ), ( %f, %f ) ), p = ( %f, %f ), distance = %f, q = ( %f, %f )\n",
            segmentX1, segmentY1, segmentX2, segmentY2, pX, pY, d, qX, qY );
}

void TestDistanceFromLineSegmentToPoint()
{
    TestDistanceFromLineSegmentToPoint( 0, 0, 1, 1, 1, 0 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, 5, 4 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, 30, 15 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 20, 10, -30, 15 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 10, 0, 5, 1 );
    TestDistanceFromLineSegmentToPoint( 0, 0, 0, 10, 1, 5 );
}

下面是HSQLDB的SQL实现:

CREATE FUNCTION dist_to_segment(px double, py double, vx double, vy double, wx double, wy double)
  RETURNS double
BEGIN atomic
   declare l2 double;
   declare t double;
   declare nx double;
   declare ny double;
   set l2 =(vx - wx)*(vx - wx) + (vy - wy)*(vy - wy);
   IF l2 = 0 THEN
     RETURN sqrt((vx - px)*(vx - px) + (vy - py)*(vy - py));
   ELSE
     set t = ((px - vx) * (wx - vx) + (py - vy) * (wy - vy)) / l2;
     set t = GREATEST(0, LEAST(1, t));
     set nx=vx + t * (wx - vx);
     set ny=vy + t * (wy - vy);
     RETURN sqrt((nx - px)*(nx - px) + (ny - py)*(ny - py));
   END IF;
END;

Postgres的实现:

CREATE FUNCTION dist_to_segment(px numeric, py numeric, vx numeric, vy numeric, wx numeric, wy numeric)
  RETURNS numeric
AS $$
   declare l2 numeric;
   declare t numeric;
   declare nx numeric;
   declare ny numeric;
BEGIN 
   l2 := (vx - wx)*(vx - wx) + (vy - wy)*(vy - wy);
   IF l2 = 0 THEN
     RETURN sqrt((vx - px)*(vx - px) + (vy - py)*(vy - py));
   ELSE
     t := ((px - vx) * (wx - vx) + (py - vy) * (wy - vy)) / l2;
     t := GREATEST(0, LEAST(1, t));
     nx := vx + t * (wx - vx);
     ny := vy + t * (wy - vy);
     RETURN sqrt((nx - px)*(nx - px) + (ny - py)*(ny - py));
   END IF;
END;
$$ LANGUAGE plpgsql;

现在我的解决方案...... (Javascript)

这是非常快的,因为我试图避免任何数学。战俘的功能。

如你所见,在函数的最后,我得到了直线的距离。

代码来自lib http://www.draw2d.org/graphiti/jsdoc/#!/例子

/**
 * Static util function to determine is a point(px,py) on the line(x1,y1,x2,y2)
 * A simple hit test.
 * 
 * @return {boolean}
 * @static
 * @private
 * @param {Number} coronaWidth the accepted corona for the hit test
 * @param {Number} X1 x coordinate of the start point of the line
 * @param {Number} Y1 y coordinate of the start point of the line
 * @param {Number} X2 x coordinate of the end point of the line
 * @param {Number} Y2 y coordinate of the end point of the line
 * @param {Number} px x coordinate of the point to test
 * @param {Number} py y coordinate of the point to test
 **/
graphiti.shape.basic.Line.hit= function( coronaWidth, X1, Y1,  X2,  Y2, px, py)
{
  // Adjust vectors relative to X1,Y1
  // X2,Y2 becomes relative vector from X1,Y1 to end of segment
  X2 -= X1;
  Y2 -= Y1;
  // px,py becomes relative vector from X1,Y1 to test point
  px -= X1;
  py -= Y1;
  var dotprod = px * X2 + py * Y2;
  var projlenSq;
  if (dotprod <= 0.0) {
      // px,py is on the side of X1,Y1 away from X2,Y2
      // distance to segment is length of px,py vector
      // "length of its (clipped) projection" is now 0.0
      projlenSq = 0.0;
  } else {
      // switch to backwards vectors relative to X2,Y2
      // X2,Y2 are already the negative of X1,Y1=>X2,Y2
      // to get px,py to be the negative of px,py=>X2,Y2
      // the dot product of two negated vectors is the same
      // as the dot product of the two normal vectors
      px = X2 - px;
      py = Y2 - py;
      dotprod = px * X2 + py * Y2;
      if (dotprod <= 0.0) {
          // px,py is on the side of X2,Y2 away from X1,Y1
          // distance to segment is length of (backwards) px,py vector
          // "length of its (clipped) projection" is now 0.0
          projlenSq = 0.0;
      } else {
          // px,py is between X1,Y1 and X2,Y2
          // dotprod is the length of the px,py vector
          // projected on the X2,Y2=>X1,Y1 vector times the
          // length of the X2,Y2=>X1,Y1 vector
          projlenSq = dotprod * dotprod / (X2 * X2 + Y2 * Y2);
      }
  }
    // Distance to line is now the length of the relative point
    // vector minus the length of its projection onto the line
    // (which is zero if the projection falls outside the range
    //  of the line segment).
    var lenSq = px * px + py * py - projlenSq;
    if (lenSq < 0) {
        lenSq = 0;
    }
    return Math.sqrt(lenSq)<coronaWidth;
};