我有一个pandas数据框架,其中一列文本字符串包含逗号分隔的值。我想拆分每个CSV字段,并为每个条目创建一个新行(假设CSV是干净的,只需要在','上拆分)。例如,a应该变成b:

In [7]: a
Out[7]: 
    var1  var2
0  a,b,c     1
1  d,e,f     2

In [8]: b
Out[8]: 
  var1  var2
0    a     1
1    b     1
2    c     1
3    d     2
4    e     2
5    f     2

到目前为止,我已经尝试了各种简单的函数,但是.apply方法在轴上使用时似乎只接受一行作为返回值,而且我不能让.transform工作。任何建议都将不胜感激!

示例数据:

from pandas import DataFrame
import numpy as np
a = DataFrame([{'var1': 'a,b,c', 'var2': 1},
               {'var1': 'd,e,f', 'var2': 2}])
b = DataFrame([{'var1': 'a', 'var2': 1},
               {'var1': 'b', 'var2': 1},
               {'var1': 'c', 'var2': 1},
               {'var1': 'd', 'var2': 2},
               {'var1': 'e', 'var2': 2},
               {'var1': 'f', 'var2': 2}])

我知道这不会起作用,因为我们通过numpy丢失了DataFrame元数据,但它应该给你一个我试图做的感觉:

def fun(row):
    letters = row['var1']
    letters = letters.split(',')
    out = np.array([row] * len(letters))
    out['var1'] = letters
a['idx'] = range(a.shape[0])
z = a.groupby('idx')
z.transform(fun)

当前回答

字符串函数split可以接受一个选项布尔参数“expand”。

下面是使用这个论点的解决方案:

(a.var1
  .str.split(",",expand=True)
  .set_index(a.var2)
  .stack()
  .reset_index(level=1, drop=True)
  .reset_index()
  .rename(columns={0:"var1"}))

其他回答

更新3:使用series . explosion () / datafframe . explosion()方法更有意义(在Pandas 0.25.0中实现,在Pandas 1.3.0中扩展以支持多列爆炸),如使用示例所示:

对于单个列:

In [1]: df = pd.DataFrame({'A': [[0, 1, 2], 'foo', [], [3, 4]],
   ...:                    'B': 1,
   ...:                    'C': [['a', 'b', 'c'], np.nan, [], ['d', 'e']]})

In [2]: df
Out[2]:
           A  B          C
0  [0, 1, 2]  1  [a, b, c]
1        foo  1        NaN
2         []  1         []
3     [3, 4]  1     [d, e]

In [3]: df.explode('A')
Out[3]:
     A  B          C
0    0  1  [a, b, c]
0    1  1  [a, b, c]
0    2  1  [a, b, c]
1  foo  1        NaN
2  NaN  1         []
3    3  1     [d, e]
3    4  1     [d, e]

用于多个列(适用于Pandas 1.3.0+):

In [4]: df.explode(['A', 'C'])
Out[4]:
     A  B    C
0    0  1    a
0    1  1    b
0    2  1    c
1  foo  1  NaN
2  NaN  1  NaN
3    3  1    d
3    4  1    e

更新2:更通用的向量化函数,它将工作于多个普通和多个列表列

def explode(df, lst_cols, fill_value='', preserve_index=False):
    # make sure `lst_cols` is list-alike
    if (lst_cols is not None
        and len(lst_cols) > 0
        and not isinstance(lst_cols, (list, tuple, np.ndarray, pd.Series))):
        lst_cols = [lst_cols]
    # all columns except `lst_cols`
    idx_cols = df.columns.difference(lst_cols)
    # calculate lengths of lists
    lens = df[lst_cols[0]].str.len()
    # preserve original index values    
    idx = np.repeat(df.index.values, lens)
    # create "exploded" DF
    res = (pd.DataFrame({
                col:np.repeat(df[col].values, lens)
                for col in idx_cols},
                index=idx)
             .assign(**{col:np.concatenate(df.loc[lens>0, col].values)
                            for col in lst_cols}))
    # append those rows that have empty lists
    if (lens == 0).any():
        # at least one list in cells is empty
        res = (res.append(df.loc[lens==0, idx_cols], sort=False)
                  .fillna(fill_value))
    # revert the original index order
    res = res.sort_index()
    # reset index if requested
    if not preserve_index:        
        res = res.reset_index(drop=True)
    return res

演示:

多个列表列-所有列表列在每行中必须有相同的元素#:

In [134]: df
Out[134]:
   aaa  myid        num          text
0   10     1  [1, 2, 3]  [aa, bb, cc]
1   11     2         []            []
2   12     3     [1, 2]      [cc, dd]
3   13     4         []            []

In [135]: explode(df, ['num','text'], fill_value='')
Out[135]:
   aaa  myid num text
0   10     1   1   aa
1   10     1   2   bb
2   10     1   3   cc
3   11     2
4   12     3   1   cc
5   12     3   2   dd
6   13     4

保留原始索引值:

In [136]: explode(df, ['num','text'], fill_value='', preserve_index=True)
Out[136]:
   aaa  myid num text
0   10     1   1   aa
0   10     1   2   bb
0   10     1   3   cc
1   11     2
2   12     3   1   cc
2   12     3   2   dd
3   13     4

设置:

df = pd.DataFrame({
 'aaa': {0: 10, 1: 11, 2: 12, 3: 13},
 'myid': {0: 1, 1: 2, 2: 3, 3: 4},
 'num': {0: [1, 2, 3], 1: [], 2: [1, 2], 3: []},
 'text': {0: ['aa', 'bb', 'cc'], 1: [], 2: ['cc', 'dd'], 3: []}
})

CSV专栏:

In [46]: df
Out[46]:
        var1  var2 var3
0      a,b,c     1   XX
1  d,e,f,x,y     2   ZZ

In [47]: explode(df.assign(var1=df.var1.str.split(',')), 'var1')
Out[47]:
  var1  var2 var3
0    a     1   XX
1    b     1   XX
2    c     1   XX
3    d     2   ZZ
4    e     2   ZZ
5    f     2   ZZ
6    x     2   ZZ
7    y     2   ZZ

使用这个小技巧,我们可以将csv类列转换为列表列:

In [48]: df.assign(var1=df.var1.str.split(','))
Out[48]:
              var1  var2 var3
0        [a, b, c]     1   XX
1  [d, e, f, x, y]     2   ZZ

更新:通用向量化方法(也适用于多列):

原始DF:

In [177]: df
Out[177]:
        var1  var2 var3
0      a,b,c     1   XX
1  d,e,f,x,y     2   ZZ

解决方案:

首先让我们把CSV字符串转换成列表:

In [178]: lst_col = 'var1' 

In [179]: x = df.assign(**{lst_col:df[lst_col].str.split(',')})

In [180]: x
Out[180]:
              var1  var2 var3
0        [a, b, c]     1   XX
1  [d, e, f, x, y]     2   ZZ

现在我们可以这样做:

In [181]: pd.DataFrame({
     ...:     col:np.repeat(x[col].values, x[lst_col].str.len())
     ...:     for col in x.columns.difference([lst_col])
     ...: }).assign(**{lst_col:np.concatenate(x[lst_col].values)})[x.columns.tolist()]
     ...:
Out[181]:
  var1  var2 var3
0    a     1   XX
1    b     1   XX
2    c     1   XX
3    d     2   ZZ
4    e     2   ZZ
5    f     2   ZZ
6    x     2   ZZ
7    y     2   ZZ

旧的回答:

受@AFinkelstein解决方案的启发,我想让它更一般化一点,它可以应用到有两列以上的DF,而且速度和AFinkelstein的解决方案一样快):

In [2]: df = pd.DataFrame(
   ...:    [{'var1': 'a,b,c', 'var2': 1, 'var3': 'XX'},
   ...:     {'var1': 'd,e,f,x,y', 'var2': 2, 'var3': 'ZZ'}]
   ...: )

In [3]: df
Out[3]:
        var1  var2 var3
0      a,b,c     1   XX
1  d,e,f,x,y     2   ZZ

In [4]: (df.set_index(df.columns.drop('var1',1).tolist())
   ...:    .var1.str.split(',', expand=True)
   ...:    .stack()
   ...:    .reset_index()
   ...:    .rename(columns={0:'var1'})
   ...:    .loc[:, df.columns]
   ...: )
Out[4]:
  var1  var2 var3
0    a     1   XX
1    b     1   XX
2    c     1   XX
3    d     2   ZZ
4    e     2   ZZ
5    f     2   ZZ
6    x     2   ZZ
7    y     2   ZZ

字符串函数split可以接受一个选项布尔参数“expand”。

下面是使用这个论点的解决方案:

(a.var1
  .str.split(",",expand=True)
  .set_index(a.var2)
  .stack()
  .reset_index(level=1, drop=True)
  .reset_index()
  .rename(columns={0:"var1"}))

在添加了这个页面上所有解决方案中的一些零碎内容后,我能够得到这样的东西(对于需要立即使用它的人来说)。 函数的参数是df(输入数据帧)和key(用分隔符分隔字符串的列)。如果分隔符与分号“;”不同,只需替换为分隔符。

def split_df_rows_for_semicolon_separated_key(key, df):
    df=df.set_index(df.columns.drop(key,1).tolist())[key].str.split(';', expand=True).stack().reset_index().rename(columns={0:key}).loc[:, df.columns]
    df=df[df[key] != '']
    return df

博士TL;

import pandas as pd
import numpy as np

def explode_str(df, col, sep):
    s = df[col]
    i = np.arange(len(s)).repeat(s.str.count(sep) + 1)
    return df.iloc[i].assign(**{col: sep.join(s).split(sep)})

def explode_list(df, col):
    s = df[col]
    i = np.arange(len(s)).repeat(s.str.len())
    return df.iloc[i].assign(**{col: np.concatenate(s)})

示范

explode_str(a, 'var1', ',')

  var1  var2
0    a     1
0    b     1
0    c     1
1    d     2
1    e     2
1    f     2

让我们创建一个包含列表的新数据框架d

d = a.assign(var1=lambda d: d.var1.str.split(','))

explode_list(d, 'var1')

  var1  var2
0    a     1
0    b     1
0    c     1
1    d     2
1    e     2
1    f     2

一般的评论

我用np。使用repeat来生成我可以用iloc使用的数据框架索引位置。

FAQ

为什么不用loc?

因为索引可能不是唯一的,使用loc将返回与查询索引匹配的每一行。

为什么不用values属性切片呢?

当调用值时,如果整个数据框架在一个内聚的“块”中,Pandas将返回该“块”数组的视图。否则熊猫将不得不拼凑一个新的阵列。补码时,该数组必须是统一的dtype。这通常意味着返回一个dtype为object的数组。通过使用iloc而不是对values属性进行切片,我减轻了不得不处理这个问题的负担。

为什么使用赋值?

当我使用与爆炸相同的列名进行赋值时,我将覆盖现有的列并保持其在数据框架中的位置。

为什么索引值重复?

通过在重复位置上使用iloc,得到的索引显示相同的重复模式。对列表或字符串中的每个元素重复一次。 这可以用reset_index(drop=True)重置


为字符串

我不想过早地把弦分开。因此,我计算sep参数的出现次数,假设我要分割,结果列表的长度将比分隔符的数量多1。

然后我使用sep来连接字符串,然后分裂。

def explode_str(df, col, sep):
    s = df[col]
    i = np.arange(len(s)).repeat(s.str.count(sep) + 1)
    return df.iloc[i].assign(**{col: sep.join(s).split(sep)})

为列表

与字符串类似,只是我不需要计算sep的出现次数,因为它已经分裂了。

我使用Numpy的concatenate将列表阻塞在一起。

import pandas as pd
import numpy as np

def explode_list(df, col):
    s = df[col]
    i = np.arange(len(s)).repeat(s.str.len())
    return df.iloc[i].assign(**{col: np.concatenate(s)})

只是从上面使用了jiln的优秀答案,但需要展开以拆分多个列。我想分享一下。

def splitDataFrameList(df,target_column,separator):
''' df = dataframe to split,
target_column = the column containing the values to split
separator = the symbol used to perform the split

returns: a dataframe with each entry for the target column separated, with each element moved into a new row. 
The values in the other columns are duplicated across the newly divided rows.
'''
def splitListToRows(row, row_accumulator, target_columns, separator):
    split_rows = []
    for target_column in target_columns:
        split_rows.append(row[target_column].split(separator))
    # Seperate for multiple columns
    for i in range(len(split_rows[0])):
        new_row = row.to_dict()
        for j in range(len(split_rows)):
            new_row[target_columns[j]] = split_rows[j][i]
        row_accumulator.append(new_row)
new_rows = []
df.apply(splitListToRows,axis=1,args = (new_rows,target_column,separator))
new_df = pd.DataFrame(new_rows)
return new_df