任何人只要长时间摆弄Python,都会被以下问题所困扰(或撕成碎片):

def foo(a=[]):
    a.append(5)
    return a

Python新手希望这个没有参数的函数总是返回一个只有一个元素的列表:[5]。结果却非常不同,非常令人惊讶(对于新手来说):

>>> foo()
[5]
>>> foo()
[5, 5]
>>> foo()
[5, 5, 5]
>>> foo()
[5, 5, 5, 5]
>>> foo()

我的一位经理曾第一次接触到这个功能,并称其为语言的“戏剧性设计缺陷”。我回答说,这种行为有一个潜在的解释,如果你不了解其内部,这确实非常令人困惑和意外。然而,我无法(对自己)回答以下问题:在函数定义时而不是在函数执行时绑定默认参数的原因是什么?我怀疑有经验的行为是否有实际用途(谁真的在C中使用了静态变量,而没有滋生bug?)

编辑:

Baczek举了一个有趣的例子。连同您的大多数评论,特别是Utaal的评论,我进一步阐述了:

>>> def a():
...     print("a executed")
...     return []
... 
>>>            
>>> def b(x=a()):
...     x.append(5)
...     print(x)
... 
a executed
>>> b()
[5]
>>> b()
[5, 5]

在我看来,设计决策似乎与将参数范围放在哪里有关:放在函数内部,还是与函数“一起”?

在函数内部进行绑定意味着当函数被调用而不是被定义时,x被有效地绑定到指定的默认值,这将带来一个严重的缺陷:def行将是“混合”的,即部分绑定(函数对象)将在定义时发生,部分绑定(默认参数的赋值)将在函数调用时发生。

实际行为更加一致:当执行该行时,该行的所有内容都会得到求值,这意味着在函数定义时。


当前回答

有一种简单的方法可以理解为什么会发生这种情况。

Python在命名空间中从上到下执行代码。

“内部”恰恰体现了这一规则。

这种选择的原因是“让语言适合你的头脑”。所有奇怪的角落情况都倾向于简化为在命名空间中执行代码:默认免疫、嵌套函数、类(编译完成时有一点补丁)、自参数等。类似地,复杂语法可以用简单语法编写:a.foo(…)只是a.lookup('fo').__call__(a,…)。这适用于列表理解;装饰工;元类;以及更多。这可以让你看到一个近乎完美的奇怪角落。这种语言适合你的头脑。

你应该坚持下去。学习Python对语言有一段时间的不满,但它会让你感到舒服。这是我用过的唯一一种语言,你越看角落里的案例,它就越简单。

继续黑客攻击!做好记录。

对于您的特定代码,太详细了:

def foo(a=[]):
    a.append(5)
    return a

foo()

是一个语句,相当于:

开始创建代码对象。现在就解释(a=[])。[]是参数a的默认值。它是列表类型的,因为[]总是这样。将:之后的所有代码编译成Python字节码,并将其粘贴到另一个列表中。使用“code”字段中的参数和代码创建可调用字典将可调用对象添加到“foo”字段中的当前命名空间。

然后,它转到下一行foo()。

它不是保留字,所以在名称空间中查找它。调用函数,该函数将使用列表作为默认参数。开始在其命名空间中执行其字节码。append不会创建新列表,因此旧列表被修改。

其他回答

我对Python解释器的内部工作一无所知(我也不是编译器和解释器的专家),所以如果我提出任何不合理或不可能的建议,不要怪我。

假设python对象是可变的,我认为在设计默认参数时应该考虑到这一点。实例化列表时:

a = []

你希望得到一个新的列表。

为什么a=[]

def x(a=[]):

在函数定义而不是调用上实例化新列表?这就像你在问“如果用户不提供参数,那么实例化一个新列表,并将其作为调用者生成的列表使用”。我认为这是模棱两可的:

def x(a=datetime.datetime.now()):

用户,是否希望a默认为定义或执行x时对应的日期时间?在本例中,与前一例一样,我将保持与默认参数“赋值”是函数的第一条指令(函数调用时调用datetime.now())相同的行为。另一方面,如果用户想要定义时间映射,他可以写:

b = datetime.datetime.now()
def x(a=b):

我知道,我知道:这是一个结束。或者Python可以提供一个关键字来强制定义时间绑定:

def x(static a=b):

这可能是真的:

有人正在使用每种语言/库功能,并且在这里改变行为是不明智的,但是

坚持上述两个特征是完全一致的,并且仍然提出另一点:

这是一个令人困惑的特性,在Python中很不幸。

其他答案,或至少其中一些答案,要么是第1点和第2点,但不是第3点,要么就是第3点而淡化第1点或第2点。但这三个都是真的。

在这里,在中途换马可能会导致严重的破坏,而且通过改变Python来直观地处理Stefano的开头片段可能会产生更多的问题。也许有人很了解Python的内部结构,就能解释一个后果雷区。然而

现有的行为不是Pythonic的,Python之所以成功,是因为该语言几乎没有违反最不令人惊讶的原则。这是一个真正的问题,无论根除它是否明智。这是一种设计缺陷。如果你通过尝试追踪行为来更好地理解语言,我可以说C++完成了所有这些以及更多的工作;例如,通过导航细微的指针错误,您可以学到很多东西。但这并不是Pythonic的:那些对Python足够关心并在这种行为面前坚持不懈的人都是被这种语言所吸引的人,因为Python比其他语言的惊喜要少得多。当他们惊讶于用很少的时间就能让一些东西发挥作用——而不是因为设计失误——我的意思是,隐藏的逻辑谜题——这违背了程序员的直觉时,达博人和好奇者就成了Python爱好者,因为Python很好用。

这个“bug”给了我很多加班时间!但我开始看到它的潜在用途(但我还是希望它在执行时使用)

我会给你一个我认为有用的例子。

def example(errors=[]):
    # statements
    # Something went wrong
    mistake = True
    if mistake:
        tryToFixIt(errors)
        # Didn't work.. let's try again
        tryToFixItAnotherway(errors)
        # This time it worked
    return errors

def tryToFixIt(err):
    err.append('Attempt to fix it')

def tryToFixItAnotherway(err):
    err.append('Attempt to fix it by another way')

def main():
    for item in range(2):
        errors = example()
    print '\n'.join(errors)

main()

打印以下内容

Attempt to fix it
Attempt to fix it by another way
Attempt to fix it
Attempt to fix it by another way

我过去认为在运行时创建对象是更好的方法。我现在不太确定,因为你确实失去了一些有用的功能,尽管这可能是值得的,无论是为了防止新手混淆。这样做的缺点是:

1.性能

def foo(arg=something_expensive_to_compute())):
    ...

如果使用了调用时求值,那么每次使用函数时都会调用代价高昂的函数,而无需参数。您要么为每次调用付出昂贵的代价,要么需要手动从外部缓存值,从而污染您的命名空间并增加冗长。

2.强制绑定参数

一个有用的技巧是在创建lambda时将lambda的参数绑定到变量的当前绑定。例如:

funcs = [ lambda i=i: i for i in range(10)]

这将返回分别返回0,1,2,3…的函数列表。如果行为发生了变化,它们会将i绑定到i的调用时间值,因此您将得到一个函数列表,所有函数都返回了9。

否则,实现这一点的唯一方法是使用i边界创建一个进一步的闭包,即:

def make_func(i): return lambda: i
funcs = [make_func(i) for i in range(10)]

3.反思

考虑代码:

def foo(a='test', b=100, c=[]):
   print a,b,c

我们可以使用inspect模块获取有关参数和默认值的信息

>>> inspect.getargspec(foo)
(['a', 'b', 'c'], None, None, ('test', 100, []))

这些信息对于文档生成、元编程、装饰器等非常有用。

现在,假设违约行为可以被改变,这相当于:

_undefined = object()  # sentinel value

def foo(a=_undefined, b=_undefined, c=_undefined)
    if a is _undefined: a='test'
    if b is _undefined: b=100
    if c is _undefined: c=[]

然而,我们已经失去了自省的能力,无法看到默认参数是什么。因为对象还没有被构造,所以我们无法在不调用函数的情况下获取它们。我们所能做的最好的方法是存储源代码并将其作为字符串返回。

我有时会利用这种行为来替代以下模式:

singleton = None

def use_singleton():
    global singleton

    if singleton is None:
        singleton = _make_singleton()

    return singleton.use_me()

如果singleton仅由use_singleton使用,我喜欢以下模式作为替换:

# _make_singleton() is called only once when the def is executed
def use_singleton(singleton=_make_singleton()):
    return singleton.use_me()

我用它来实例化访问外部资源的客户机类,也用来创建用于内存化的字典或列表。

由于我不认为这种模式是众所周知的,所以我确实发表了简短的评论,以防止未来的误解。