任何人只要长时间摆弄Python,都会被以下问题所困扰(或撕成碎片):

def foo(a=[]):
    a.append(5)
    return a

Python新手希望这个没有参数的函数总是返回一个只有一个元素的列表:[5]。结果却非常不同,非常令人惊讶(对于新手来说):

>>> foo()
[5]
>>> foo()
[5, 5]
>>> foo()
[5, 5, 5]
>>> foo()
[5, 5, 5, 5]
>>> foo()

我的一位经理曾第一次接触到这个功能,并称其为语言的“戏剧性设计缺陷”。我回答说,这种行为有一个潜在的解释,如果你不了解其内部,这确实非常令人困惑和意外。然而,我无法(对自己)回答以下问题:在函数定义时而不是在函数执行时绑定默认参数的原因是什么?我怀疑有经验的行为是否有实际用途(谁真的在C中使用了静态变量,而没有滋生bug?)

编辑:

Baczek举了一个有趣的例子。连同您的大多数评论,特别是Utaal的评论,我进一步阐述了:

>>> def a():
...     print("a executed")
...     return []
... 
>>>            
>>> def b(x=a()):
...     x.append(5)
...     print(x)
... 
a executed
>>> b()
[5]
>>> b()
[5, 5]

在我看来,设计决策似乎与将参数范围放在哪里有关:放在函数内部,还是与函数“一起”?

在函数内部进行绑定意味着当函数被调用而不是被定义时,x被有效地绑定到指定的默认值,这将带来一个严重的缺陷:def行将是“混合”的,即部分绑定(函数对象)将在定义时发生,部分绑定(默认参数的赋值)将在函数调用时发生。

实际行为更加一致:当执行该行时,该行的所有内容都会得到求值,这意味着在函数定义时。


当前回答

这里的解决方案是:

使用None作为默认值(或随机数对象),并在运行时打开它以创建值;或使用lambda作为默认参数,并在try块中调用它以获得默认值(这是lambda抽象的目的)。

第二个选项很好,因为函数的用户可以传入一个可调用的,它可能已经存在(例如类型)

其他回答

这种行为很容易解释为:

函数(类等)声明只执行一次,创建所有默认值对象所有内容都通过引用传递

So:

def x(a=0, b=[], c=[], d=0):
    a = a + 1
    b = b + [1]
    c.append(1)
    print a, b, c

a不改变-每次赋值调用都创建新的int对象-打印新对象b不变-新数组是从默认值构建并打印的c更改-对同一对象执行操作-并打印

有一种简单的方法可以理解为什么会发生这种情况。

Python在命名空间中从上到下执行代码。

“内部”恰恰体现了这一规则。

这种选择的原因是“让语言适合你的头脑”。所有奇怪的角落情况都倾向于简化为在命名空间中执行代码:默认免疫、嵌套函数、类(编译完成时有一点补丁)、自参数等。类似地,复杂语法可以用简单语法编写:a.foo(…)只是a.lookup('fo').__call__(a,…)。这适用于列表理解;装饰工;元类;以及更多。这可以让你看到一个近乎完美的奇怪角落。这种语言适合你的头脑。

你应该坚持下去。学习Python对语言有一段时间的不满,但它会让你感到舒服。这是我用过的唯一一种语言,你越看角落里的案例,它就越简单。

继续黑客攻击!做好记录。

对于您的特定代码,太详细了:

def foo(a=[]):
    a.append(5)
    return a

foo()

是一个语句,相当于:

开始创建代码对象。现在就解释(a=[])。[]是参数a的默认值。它是列表类型的,因为[]总是这样。将:之后的所有代码编译成Python字节码,并将其粘贴到另一个列表中。使用“code”字段中的参数和代码创建可调用字典将可调用对象添加到“foo”字段中的当前命名空间。

然后,它转到下一行foo()。

它不是保留字,所以在名称空间中查找它。调用函数,该函数将使用列表作为默认参数。开始在其命名空间中执行其字节码。append不会创建新列表,因此旧列表被修改。

你问的是为什么会这样:

def func(a=[], b = 2):
    pass

在内部并不等同于此:

def func(a=None, b = None):
    a_default = lambda: []
    b_default = lambda: 2
    def actual_func(a=None, b=None):
        if a is None: a = a_default()
        if b is None: b = b_default()
    return actual_func
func = func()

除了显式调用func(None,None)的情况,我们将忽略它。

换句话说,与其计算默认参数,不如存储每个参数,并在调用函数时计算它们?

一个答案可能就在这里——它可以有效地将每个带有默认参数的函数转换为闭包。即使所有数据都隐藏在解释器中,而不是完全关闭,数据也必须存储在某个地方。它会更慢,占用更多内存。

我有时会利用这种行为来替代以下模式:

singleton = None

def use_singleton():
    global singleton

    if singleton is None:
        singleton = _make_singleton()

    return singleton.use_me()

如果singleton仅由use_singleton使用,我喜欢以下模式作为替换:

# _make_singleton() is called only once when the def is executed
def use_singleton(singleton=_make_singleton()):
    return singleton.use_me()

我用它来实例化访问外部资源的客户机类,也用来创建用于内存化的字典或列表。

由于我不认为这种模式是众所周知的,所以我确实发表了简短的评论,以防止未来的误解。

这个“bug”给了我很多加班时间!但我开始看到它的潜在用途(但我还是希望它在执行时使用)

我会给你一个我认为有用的例子。

def example(errors=[]):
    # statements
    # Something went wrong
    mistake = True
    if mistake:
        tryToFixIt(errors)
        # Didn't work.. let's try again
        tryToFixItAnotherway(errors)
        # This time it worked
    return errors

def tryToFixIt(err):
    err.append('Attempt to fix it')

def tryToFixItAnotherway(err):
    err.append('Attempt to fix it by another way')

def main():
    for item in range(2):
        errors = example()
    print '\n'.join(errors)

main()

打印以下内容

Attempt to fix it
Attempt to fix it by another way
Attempt to fix it
Attempt to fix it by another way