在c#中是否有默认/官方/推荐的方法来解析CSV文件?我不想滚动自己的解析器。
另外,我也见过人们使用ODBC/OLE DB通过文本驱动程序读取CSV的实例,很多人因为它的“缺点”而不鼓励这样做。这些缺点是什么?
理想情况下,我正在寻找一种方法,通过它我可以通过列名读取CSV,使用第一个记录作为报头/字段名。给出的一些答案是正确的,但基本上是将文件反序列化为类。
在c#中是否有默认/官方/推荐的方法来解析CSV文件?我不想滚动自己的解析器。
另外,我也见过人们使用ODBC/OLE DB通过文本驱动程序读取CSV的实例,很多人因为它的“缺点”而不鼓励这样做。这些缺点是什么?
理想情况下,我正在寻找一种方法,通过它我可以通过列名读取CSV,使用第一个记录作为报头/字段名。给出的一些答案是正确的,但基本上是将文件反序列化为类。
当前回答
让一个库为你处理所有的细节!: -)
检查FileHelpers和保持干燥-不重复自己-不需要重新发明轮子的亿万次....
基本上,您只需要定义数据的形状——CSV中各个行中的字段——通过一个公共类(以及诸如默认值、NULL值替换等经过精心考虑的属性),将FileHelpers引擎指向一个文件,然后就可以从该文件中获得所有条目。一个简单的操作-卓越的性能!
其他回答
CSV解析器现在是. net框架的一部分。
添加对Microsoft.VisualBasic.dll的引用(在c#中工作良好,不要介意名称)
using (TextFieldParser parser = new TextFieldParser(@"c:\temp\test.csv"))
{
parser.TextFieldType = FieldType.Delimited;
parser.SetDelimiters(",");
while (!parser.EndOfData)
{
//Process row
string[] fields = parser.ReadFields();
foreach (string field in fields)
{
//TODO: Process field
}
}
}
文档在这里- TextFieldParser类
附注:如果你需要一个CSV导出器,试试CsvExport (discl:我是贡献者之一)
我已经为。net编写了TinyCsvParser,它是目前最快的。net解析器之一,并且高度可配置,可以解析几乎任何CSV格式。
它在MIT许可下发布:
https://github.com/bytefish/TinyCsvParser
你可以使用NuGet来安装它。在包管理器控制台中运行以下命令。
PM> Install-Package TinyCsvParser
使用
假设我们在CSV文件Persons . CSV中有一个person列表,包含他们的名字、姓氏和生日。
FirstName;LastName;BirthDate
Philipp;Wagner;1986/05/12
Max;Musterman;2014/01/02
系统中相应的域模型可能是这样的。
private class Person
{
public string FirstName { get; set; }
public string LastName { get; set; }
public DateTime BirthDate { get; set; }
}
当使用TinyCsvParser时,您必须定义CSV数据中的列和域模型中的属性之间的映射。
private class CsvPersonMapping : CsvMapping<Person>
{
public CsvPersonMapping()
: base()
{
MapProperty(0, x => x.FirstName);
MapProperty(1, x => x.LastName);
MapProperty(2, x => x.BirthDate);
}
}
然后,我们可以使用映射使用CsvParser解析CSV数据。
namespace TinyCsvParser.Test
{
[TestFixture]
public class TinyCsvParserTest
{
[Test]
public void TinyCsvTest()
{
CsvParserOptions csvParserOptions = new CsvParserOptions(true, new[] { ';' });
CsvPersonMapping csvMapper = new CsvPersonMapping();
CsvParser<Person> csvParser = new CsvParser<Person>(csvParserOptions, csvMapper);
var result = csvParser
.ReadFromFile(@"persons.csv", Encoding.ASCII)
.ToList();
Assert.AreEqual(2, result.Count);
Assert.IsTrue(result.All(x => x.IsValid));
Assert.AreEqual("Philipp", result[0].Result.FirstName);
Assert.AreEqual("Wagner", result[0].Result.LastName);
Assert.AreEqual(1986, result[0].Result.BirthDate.Year);
Assert.AreEqual(5, result[0].Result.BirthDate.Month);
Assert.AreEqual(12, result[0].Result.BirthDate.Day);
Assert.AreEqual("Max", result[1].Result.FirstName);
Assert.AreEqual("Mustermann", result[1].Result.LastName);
Assert.AreEqual(2014, result[1].Result.BirthDate.Year);
Assert.AreEqual(1, result[1].Result.BirthDate.Month);
Assert.AreEqual(1, result[1].Result.BirthDate.Day);
}
}
}
用户指南
完整的用户指南可在以下网址查阅:
http://bytefish.github.io/TinyCsvParser/
如果任何人想要一个代码片段,他们可以直接输入自己的代码,而不必绑定库或下载包。以下是我写的一个版本:
public static string FormatCSV(List<string> parts)
{
string result = "";
foreach (string s in parts)
{
if (result.Length > 0)
{
result += ",";
if (s.Length == 0)
continue;
}
if (s.Length > 0)
{
result += "\"" + s.Replace("\"", "\"\"") + "\"";
}
else
{
// cannot output double quotes since its considered an escape for a quote
result += ",";
}
}
return result;
}
enum CSVMode
{
CLOSED = 0,
OPENED_RAW = 1,
OPENED_QUOTE = 2
}
public static List<string> ParseCSV(string input)
{
List<string> results;
CSVMode mode;
char[] letters;
string content;
mode = CSVMode.CLOSED;
content = "";
results = new List<string>();
letters = input.ToCharArray();
for (int i = 0; i < letters.Length; i++)
{
char letter = letters[i];
char nextLetter = '\0';
if (i < letters.Length - 1)
nextLetter = letters[i + 1];
// If its a quote character
if (letter == '"')
{
// If that next letter is a quote
if (nextLetter == '"' && mode == CSVMode.OPENED_QUOTE)
{
// Then this quote is escaped and should be added to the content
content += letter;
// Skip the escape character
i++;
continue;
}
else
{
// otherwise its not an escaped quote and is an opening or closing one
// Character is skipped
// If it was open, then close it
if (mode == CSVMode.OPENED_QUOTE)
{
results.Add(content);
// reset the content
content = "";
mode = CSVMode.CLOSED;
// If there is a next letter available
if (nextLetter != '\0')
{
// If it is a comma
if (nextLetter == ',')
{
i++;
continue;
}
else
{
throw new Exception("Expected comma. Found: " + nextLetter);
}
}
}
else if (mode == CSVMode.OPENED_RAW)
{
// If it was opened raw, then just add the quote
content += letter;
}
else if (mode == CSVMode.CLOSED)
{
// Otherwise open it as a quote
mode = CSVMode.OPENED_QUOTE;
}
}
}
// If its a comma seperator
else if (letter == ',')
{
// If in quote mode
if (mode == CSVMode.OPENED_QUOTE)
{
// Just read it
content += letter;
}
// If raw, then close the content
else if (mode == CSVMode.OPENED_RAW)
{
results.Add(content);
content = "";
mode = CSVMode.CLOSED;
}
// If it was closed, then open it raw
else if (mode == CSVMode.CLOSED)
{
mode = CSVMode.OPENED_RAW;
results.Add(content);
content = "";
}
}
else
{
// If opened quote, just read it
if (mode == CSVMode.OPENED_QUOTE)
{
content += letter;
}
// If opened raw, then read it
else if (mode == CSVMode.OPENED_RAW)
{
content += letter;
}
// It closed, then open raw
else if (mode == CSVMode.CLOSED)
{
mode = CSVMode.OPENED_RAW;
content += letter;
}
}
}
// If it was still reading when the buffer finished
if (mode != CSVMode.CLOSED)
{
results.Add(content);
}
return results;
}
对于较小的CSV输入数据,LINQ是完全足够的。 以以下CSV文件内容为例:
schema_name、描述utype “IX_HE”、“高能量数据”,“x” “III_spectro”、“Spectrosopic数据”、“d” “VI_misc”、“杂”、“f” “vcds1”,“目录只在cd上提供”,“d” “J_other”,“其他期刊发表的文章”,“b”
当我们将整个内容读入一个名为data的字符串时,则
using System;
using System.IO;
using System.Linq;
var data = File.ReadAllText(Path2CSV);
// helper split characters
var newline = Environment.NewLine.ToCharArray();
var comma = ",".ToCharArray();
var quote = "\"".ToCharArray();
// split input string data to lines
var lines = data.Split(newline);
// first line is header, take the header fields
foreach (var col in lines.First().Split(comma)) {
// do something with "col"
}
// we skip the first line, all the rest are real data lines/fields
foreach (var line in lines.Skip(1)) {
// first we split the data line by comma character
// next we remove double qoutes from each splitted element using Trim()
// finally we make an array
var fields = line.Split(comma)
.Select(_ => { _ = _.Trim(quote); return _; })
.ToArray();
// do something with the "fields" array
}
CsvHelper(我维护的一个库)将把CSV文件读入自定义对象。
using (var reader = new StreamReader("path\\to\\file.csv"))
using (var csv = new CsvReader(reader, CultureInfo.InvariantCulture))
{
var records = csv.GetRecords<Foo>();
}
有时候你并不拥有你想读的对象。在这种情况下,您可以使用流畅映射,因为您不能将属性放在类上。
public sealed class MyCustomObjectMap : CsvClassMap<MyCustomObject>
{
public MyCustomObjectMap()
{
Map( m => m.Property1 ).Name( "Column Name" );
Map( m => m.Property2 ).Index( 4 );
Map( m => m.Property3 ).Ignore();
Map( m => m.Property4 ).TypeConverter<MySpecialTypeConverter>();
}
}