如何在c++中转换大端值和小端值?

为了清晰起见,我必须将二进制数据(双精度浮点值以及32位和64位整数)从一个CPU架构转换到另一个CPU架构。这并不涉及网络,因此ntoh()和类似的函数在这里不能工作。


注意:我接受的答案直接适用于我的目标编译器(这就是我选择它的原因)。然而,这里还有其他非常好的、更方便的答案。


当前回答

似乎安全的方法是在每个单词上使用“顿音”。所以,如果你有。

std::vector<uint16_t> storage(n);  // where n is the number to be converted

// the following would do the trick
std::transform(word_storage.cbegin(), word_storage.cend()
  , word_storage.begin(), [](const uint16_t input)->uint16_t {
  return htons(input); });

如果您是在一个大端系统上,那么上面的代码将是一个无操作,因此我将查找您的平台使用的任何编译时条件,以确定htons是否是一个无操作。毕竟是O(n)在Mac上,它会是这样的……

#if (__DARWIN_BYTE_ORDER != __DARWIN_BIG_ENDIAN)
std::transform(word_storage.cbegin(), word_storage.cend()
  , word_storage.begin(), [](const uint16_t input)->uint16_t {
  return htons(input); });
#endif

其他回答

下面介绍如何读取以IEEE 754 64位格式存储的double,即使您的主机使用不同的系统。

/*
* read a double from a stream in ieee754 format regardless of host
*  encoding.
*  fp - the stream
*  bigendian - set to if big bytes first, clear for little bytes
*              first
*
*/
double freadieee754(FILE *fp, int bigendian)
{
    unsigned char buff[8];
    int i;
    double fnorm = 0.0;
    unsigned char temp;
    int sign;
    int exponent;
    double bitval;
    int maski, mask;
    int expbits = 11;
    int significandbits = 52;
    int shift;
    double answer;

    /* read the data */
    for (i = 0; i < 8; i++)
        buff[i] = fgetc(fp);
    /* just reverse if not big-endian*/
    if (!bigendian)
    {
        for (i = 0; i < 4; i++)
        {
            temp = buff[i];
            buff[i] = buff[8 - i - 1];
            buff[8 - i - 1] = temp;
        }
    }
    sign = buff[0] & 0x80 ? -1 : 1;
    /* exponet in raw format*/
    exponent = ((buff[0] & 0x7F) << 4) | ((buff[1] & 0xF0) >> 4);

    /* read inthe mantissa. Top bit is 0.5, the successive bits half*/
    bitval = 0.5;
    maski = 1;
    mask = 0x08;
    for (i = 0; i < significandbits; i++)
    {
        if (buff[maski] & mask)
            fnorm += bitval;

        bitval /= 2.0;
        mask >>= 1;
        if (mask == 0)
        {
            mask = 0x80;
            maski++;
        }
    }
    /* handle zero specially */
    if (exponent == 0 && fnorm == 0)
        return 0.0;

    shift = exponent - ((1 << (expbits - 1)) - 1); /* exponent = shift + bias */
    /* nans have exp 1024 and non-zero mantissa */
    if (shift == 1024 && fnorm != 0)
        return sqrt(-1.0);
    /*infinity*/
    if (shift == 1024 && fnorm == 0)
    {

#ifdef INFINITY
        return sign == 1 ? INFINITY : -INFINITY;
#endif
        return  (sign * 1.0) / 0.0;
    }
    if (shift > -1023)
    {
        answer = ldexp(fnorm + 1.0, shift);
        return answer * sign;
    }
    else
    {
        /* denormalised numbers */
        if (fnorm == 0.0)
            return 0.0;
        shift = -1022;
        while (fnorm < 1.0)
        {
            fnorm *= 2;
            shift--;
        }
        answer = ldexp(fnorm, shift);
        return answer * sign;
    }
}

对于这套函数的其余部分,包括写和整数例程,请参阅我的github项目

https://github.com/MalcolmMcLean/ieee754

如果您这样做是为了在不同平台之间传输数据,请查看ntoh和hton函数。

我真的很惊讶没有人提到htobeXX和betohXX函数。它们定义在end .h中,非常类似于网络函数htonXX。

我们已经用模板做到了这一点。你可以这样做:

// Specialization for 2-byte types.
template<>
inline void endian_byte_swapper< 2 >(char* dest, char const* src)
{
    // Use bit manipulations instead of accessing individual bytes from memory, much faster.
    ushort* p_dest = reinterpret_cast< ushort* >(dest);
    ushort const* const p_src = reinterpret_cast< ushort const* >(src);
    *p_dest = (*p_src >> 8) | (*p_src << 8);
}

// Specialization for 4-byte types.
template<>
inline void endian_byte_swapper< 4 >(char* dest, char const* src)
{
    // Use bit manipulations instead of accessing individual bytes from memory, much faster.
    uint* p_dest = reinterpret_cast< uint* >(dest);
    uint const* const p_src = reinterpret_cast< uint const* >(src);
    *p_dest = (*p_src >> 24) | ((*p_src & 0x00ff0000) >> 8) | ((*p_src & 0x0000ff00) << 8) | (*p_src << 24);
}

使用下面的代码,您可以轻松地在BigEndian和LittleEndian之间进行切换

#define uint32_t unsigned 
#define uint16_t unsigned short

#define swap16(x) ((((uint16_t)(x) & 0x00ff)<<8)| \
(((uint16_t)(x) & 0xff00)>>8))

#define swap32(x) ((((uint32_t)(x) & 0x000000ff)<<24)| \
(((uint32_t)(x) & 0x0000ff00)<<8)| \
(((uint32_t)(x) & 0x00ff0000)>>8)| \
(((uint32_t)(x) & 0xff000000)>>24))