有几个关于浮点表示法的问题被提交给了SO。例如,十进制数0.1没有精确的二进制表示,因此使用==操作符将其与另一个浮点数进行比较是危险的。我理解浮点表示法背后的原理。

我不明白的是,为什么从数学的角度来看,小数点右边的数字比左边的数字更“特殊”?

例如,数字61.0具有精确的二进制表示,因为任何数字的整数部分总是精确的。但6.10这个数字并不准确。我所做的只是把小数点移了一位突然间我就从精确乌托邦变成了不精确镇。从数学上讲,这两个数字之间不应该有本质差别——它们只是数字。

相比之下,如果我把小数点向另一个方向移动一位,得到数字610,我仍然在Exactopia。我可以继续往这个方向(6100,610000000,610000000000000)它们仍然是完全,完全,完全的。但是一旦小数点越过某个阈值,这些数字就不再精确了。

这是怎么呢

编辑:为了澄清,我不想讨论诸如IEEE之类的行业标准表示,而是坚持我所相信的数学上的“纯粹”方式。以10为基数,位置值为:

... 1000  100   10    1   1/10  1/100 ...

在二进制中,它们将是:

... 8    4    2    1    1/2  1/4  1/8 ...

这些数字也没有任意的限制。位置向左和向右无限增加。


当前回答

一个简单的答案是:计算机没有无限的内存来存储分数(在以科学记数法的形式表示十进制数之后)。根据IEEE 754双精度浮点数标准,我们只有53位的限制来存储分数。 欲了解更多信息:http://mathcenter.oxford.emory.edu/site/cs170/ieee754/

其他回答

根(数学)原因是,当你处理整数时,它们是可数无限的。

这意味着,即使它们的数量是无限的,我们也可以“数出”序列中的所有项目,而不会跳过任何一项。这意味着,如果我们想要在列表中的第610000000000000th位置上得到一项,我们可以通过一个公式来计算它。

然而,实数是无限的。你不能说“给我位置610000000000000的真实数字”并得到一个答案。原因是,即使在0到1之间,当考虑浮点值时,也有无限个值。这同样适用于任何两个浮点数。

更多信息:

http://en.wikipedia.org/wiki/Countable_set

http://en.wikipedia.org/wiki/Uncountable_set

更新: 很抱歉,我似乎误解了这个问题。我的回答是关于为什么我们不能表示每一个真实的值,我没有意识到浮点数被自动归类为理性。

有理数的数量是无限的,而用来表示有理数的比特的数量是有限的。见http://en.wikipedia.org/wiki/Floating_point # Accuracy_problems。

你们知道整数,对吧?每一位代表2^n

2 ^ 4 = 16 2 ^ 3 = 8 2 ^ 2 = 4 2 ^ 1 = 2 2 ^ 0 = 1

浮点数也是一样的(有一些区别),但是比特代表2^-n 2 ^ 1 = 1/2 = 0.5 2 ^ 2 = 1 / (2 * 2) = 0.25 2 ^ 3 = 0.125 2 ^ 4 = 0.0625

浮点二进制表示法:

符号指数分数(我认为无形的1被附加到分数) B11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

正如我们一直在讨论的,在浮点算术中,十进制0.1不能完美地用二进制表示。

浮点和整数表示形式为所表示的数字提供网格或格子。当完成算术运算时,结果会从网格中脱落,必须通过舍入将其放回网格中。例如二进制网格上的1/10。

如果我们像一位先生建议的那样,使用二进制编码的十进制表示,我们能在网格上保持数字吗?

一个简单的答案是:计算机没有无限的内存来存储分数(在以科学记数法的形式表示十进制数之后)。根据IEEE 754双精度浮点数标准,我们只有53位的限制来存储分数。 欲了解更多信息:http://mathcenter.oxford.emory.edu/site/cs170/ieee754/