有几个关于浮点表示法的问题被提交给了SO。例如,十进制数0.1没有精确的二进制表示,因此使用==操作符将其与另一个浮点数进行比较是危险的。我理解浮点表示法背后的原理。
我不明白的是,为什么从数学的角度来看,小数点右边的数字比左边的数字更“特殊”?
例如,数字61.0具有精确的二进制表示,因为任何数字的整数部分总是精确的。但6.10这个数字并不准确。我所做的只是把小数点移了一位突然间我就从精确乌托邦变成了不精确镇。从数学上讲,这两个数字之间不应该有本质差别——它们只是数字。
相比之下,如果我把小数点向另一个方向移动一位,得到数字610,我仍然在Exactopia。我可以继续往这个方向(6100,610000000,610000000000000)它们仍然是完全,完全,完全的。但是一旦小数点越过某个阈值,这些数字就不再精确了。
这是怎么呢
编辑:为了澄清,我不想讨论诸如IEEE之类的行业标准表示,而是坚持我所相信的数学上的“纯粹”方式。以10为基数,位置值为:
... 1000 100 10 1 1/10 1/100 ...
在二进制中,它们将是:
... 8 4 2 1 1/2 1/4 1/8 ...
这些数字也没有任意的限制。位置向左和向右无限增加。
这是个好问题。
你所有的问题都是基于“我们如何表示一个数字?”
所有的数字都可以用十进制表示,也可以用二进制(2的补码)表示。所有人!!
但有些(大多数)需要无穷多个元素(二进制位置为“0”或“1”,十进制表示为“0”,“1”到“9”)。
比如十进制表示的1/3(1/3 = 0.3333333…<-包含无限个“3”)
比如二进制中的0.1 (0.1 = 0.00011001100110011....<-带有无限个“0011”)
一切都在这个概念中。由于您的计算机只能考虑有限的数字集(十进制或二进制),只有一些数字可以准确地表示在您的计算机…
乔恩说过,3是质数,不是10的因数,所以1/3不能用以10为底的有限个数来表示。
即使使用任意精度的算术,以2为基数的编号位置系统也不能完全描述6.1,尽管它可以表示61。
对于6.1,我们必须使用另一种表示法(比如十进制表示法,或者允许以2为底或以10为底表示浮点值的IEEE 854)。
如果你有足够的空间,十进制数可以精确地表示出来——只是不能用浮点二进制数表示。如果您使用浮点小数点类型(例如System。. net中的十进制),那么许多不能用二进制浮点数精确表示的值都可以被精确表示。
让我们从另一个角度来看——以10为基数,你可能会觉得舒服,你不能准确地表示1/3。这是0.3333333……(重复)。不能将0.1表示为二进制浮点数的原因与此完全相同。你可以表示3 9和27,但不是1/3 1/9或1/27。
问题是3是质数,不是10的因数。当你想将一个数乘以3时,这不是一个问题:你总是可以乘以一个整数而不会遇到问题。但是当你除以一个质数而不是底数的因数时,你就会遇到麻烦(如果你试图用1除以这个数,你就会遇到麻烦)。
虽然0.1通常被用作精确十进制数的最简单例子,它不能用二进制浮点数精确表示,但可以说0.2是一个更简单的例子,因为它是1/5,而5是导致十进制和二进制之间存在问题的素数。
边注:处理有限表示的问题:
Some floating decimal point types have a fixed size like System.Decimal others like java.math.BigDecimal are "arbitrarily large" - but they'll hit a limit at some point, whether it's system memory or the theoretical maximum size of an array. This is an entirely separate point to the main one of this answer, however. Even if you had a genuinely arbitrarily large number of bits to play with, you still couldn't represent decimal 0.1 exactly in a floating binary point representation. Compare that with the other way round: given an arbitrary number of decimal digits, you can exactly represent any number which is exactly representable as a floating binary point.
上面的高分答案完全正确。
首先,你的问题中混合了以2为底和以10为底的数,然后当你把一个不能整除的数放在右边时,你就有问题了。比如十进制的1/3因为3不能整除10的幂,或者二进制的1/5不能整除2的幂。
Another comment though NEVER use equal with floating point numbers, period. Even if it is an exact representation there are some numbers in some floating point systems that can be accurately represented in more than one way (IEEE is bad about this, it is a horrible floating point spec to start with, so expect headaches). No different here 1/3 is not EQUAL to the number on your calculator 0.3333333, no matter how many 3's there are to the right of the decimal point. It is or can be close enough but is not equal. so you would expect something like 2*1/3 to not equal 2/3 depending on the rounding. Never use equal with floating point.