有几个关于浮点表示法的问题被提交给了SO。例如,十进制数0.1没有精确的二进制表示,因此使用==操作符将其与另一个浮点数进行比较是危险的。我理解浮点表示法背后的原理。

我不明白的是,为什么从数学的角度来看,小数点右边的数字比左边的数字更“特殊”?

例如,数字61.0具有精确的二进制表示,因为任何数字的整数部分总是精确的。但6.10这个数字并不准确。我所做的只是把小数点移了一位突然间我就从精确乌托邦变成了不精确镇。从数学上讲,这两个数字之间不应该有本质差别——它们只是数字。

相比之下,如果我把小数点向另一个方向移动一位,得到数字610,我仍然在Exactopia。我可以继续往这个方向(6100,610000000,610000000000000)它们仍然是完全,完全,完全的。但是一旦小数点越过某个阈值,这些数字就不再精确了。

这是怎么呢

编辑:为了澄清,我不想讨论诸如IEEE之类的行业标准表示,而是坚持我所相信的数学上的“纯粹”方式。以10为基数,位置值为:

... 1000  100   10    1   1/10  1/100 ...

在二进制中,它们将是:

... 8    4    2    1    1/2  1/4  1/8 ...

这些数字也没有任意的限制。位置向左和向右无限增加。


当前回答

我很惊讶居然没有人说过:使用连分式。任何有理数都可以用二进制有限地表示。

一些例子:

1/3 (0.3333...)

0; 3

5/9 (0.5555...)

0; 1, 1, 4

10/43 (0.232558139534883720930...).

0; 4, 3, 3

9093/18478 (0.49209871198181621387596060179673...).

0; 2, 31, 7, 8, 5

从这里开始,有多种已知的方法可以在内存中存储整数序列。

除了精确地存储数字外,连分式还有其他一些好处,比如最佳有理逼近。如果您决定提前终止连分式中的数字序列,则剩余的数字(当重新组合为分数时)将给出可能的最佳分数。这是如何找到圆周率的近似值的:

π的连分式:

3; 7, 15, 1, 292 ...

在1处终止序列,得到的分数是:

355/113

这是一个很好的有理近似。

其他回答

上面的高分答案完全正确。

首先,你的问题中混合了以2为底和以10为底的数,然后当你把一个不能整除的数放在右边时,你就有问题了。比如十进制的1/3因为3不能整除10的幂,或者二进制的1/5不能整除2的幂。

Another comment though NEVER use equal with floating point numbers, period. Even if it is an exact representation there are some numbers in some floating point systems that can be accurately represented in more than one way (IEEE is bad about this, it is a horrible floating point spec to start with, so expect headaches). No different here 1/3 is not EQUAL to the number on your calculator 0.3333333, no matter how many 3's there are to the right of the decimal point. It is or can be close enough but is not equal. so you would expect something like 2*1/3 to not equal 2/3 depending on the rounding. Never use equal with floating point.

数字61.0确实有一个精确的浮点运算——但这并不是对所有整数都适用。如果您编写了一个循环,将一个双精度浮点数和一个64位整数都加了1,最终您将达到这样的情况:64位整数完美地表示一个数字,而浮点数却不能——因为没有足够的有效位。

只是在小数点右边求近似值要容易得多。如果你把所有的数字都写成二进制浮点数,这就更有意义了。

另一种思考的方式是,当你注意到61.0完全可以用10为底表示时,移动小数点并不会改变这一点,你是在执行10的幂乘法(10^1,10^-1)。在浮点数中,乘以2的幂并不影响数字的精度。试着用61.0反复除以3来说明一个非常精确的数字是如何失去它的精确表示的。

根(数学)原因是,当你处理整数时,它们是可数无限的。

这意味着,即使它们的数量是无限的,我们也可以“数出”序列中的所有项目,而不会跳过任何一项。这意味着,如果我们想要在列表中的第610000000000000th位置上得到一项,我们可以通过一个公式来计算它。

然而,实数是无限的。你不能说“给我位置610000000000000的真实数字”并得到一个答案。原因是,即使在0到1之间,当考虑浮点值时,也有无限个值。这同样适用于任何两个浮点数。

更多信息:

http://en.wikipedia.org/wiki/Countable_set

http://en.wikipedia.org/wiki/Uncountable_set

更新: 很抱歉,我似乎误解了这个问题。我的回答是关于为什么我们不能表示每一个真实的值,我没有意识到浮点数被自动归类为理性。

你们知道整数,对吧?每一位代表2^n

2 ^ 4 = 16 2 ^ 3 = 8 2 ^ 2 = 4 2 ^ 1 = 2 2 ^ 0 = 1

浮点数也是一样的(有一些区别),但是比特代表2^-n 2 ^ 1 = 1/2 = 0.5 2 ^ 2 = 1 / (2 * 2) = 0.25 2 ^ 3 = 0.125 2 ^ 4 = 0.0625

浮点二进制表示法:

符号指数分数(我认为无形的1被附加到分数) B11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

有一个阈值,因为数字的含义已经从整数变成了非整数。要表示61,有6*10^1 + 1*10^0;10^1和10^0都是整数。6.1是6*10^0 + 1*10^-1,但10^-1是1/10,显然不是整数。这就是你在不精确镇的下场。