有几个关于浮点表示法的问题被提交给了SO。例如,十进制数0.1没有精确的二进制表示,因此使用==操作符将其与另一个浮点数进行比较是危险的。我理解浮点表示法背后的原理。

我不明白的是,为什么从数学的角度来看,小数点右边的数字比左边的数字更“特殊”?

例如,数字61.0具有精确的二进制表示,因为任何数字的整数部分总是精确的。但6.10这个数字并不准确。我所做的只是把小数点移了一位突然间我就从精确乌托邦变成了不精确镇。从数学上讲,这两个数字之间不应该有本质差别——它们只是数字。

相比之下,如果我把小数点向另一个方向移动一位,得到数字610,我仍然在Exactopia。我可以继续往这个方向(6100,610000000,610000000000000)它们仍然是完全,完全,完全的。但是一旦小数点越过某个阈值,这些数字就不再精确了。

这是怎么呢

编辑:为了澄清,我不想讨论诸如IEEE之类的行业标准表示,而是坚持我所相信的数学上的“纯粹”方式。以10为基数,位置值为:

... 1000  100   10    1   1/10  1/100 ...

在二进制中,它们将是:

... 8    4    2    1    1/2  1/4  1/8 ...

这些数字也没有任意的限制。位置向左和向右无限增加。


当前回答

在等式中

2^x = y ;  
x = log(y) / log(2)

因此,我想知道我们是否可以有一个二进制的对数制,

 2^1, 2^0, 2^(log(1/2) / log(2)), 2^(log(1/4) / log(2)), 2^(log(1/8) / log(2)),2^(log(1/16) / log(2)) ........

这也许能解决问题,所以如果你想把32.41写成二进制,那就是

2^5 + 2^(log(0.4) / log(2)) + 2^(log(0.01) / log(2))

Or

2^5 + 2^(log(0.41) / log(2))

其他回答

这和你不能精确地以10为基数表示1/3的原因是一样的,你需要说0.33333(3)。在二进制中,这是相同类型的问题,只是发生在不同的数字集上。

如果你有足够的空间,十进制数可以精确地表示出来——只是不能用浮点二进制数表示。如果您使用浮点小数点类型(例如System。. net中的十进制),那么许多不能用二进制浮点数精确表示的值都可以被精确表示。

让我们从另一个角度来看——以10为基数,你可能会觉得舒服,你不能准确地表示1/3。这是0.3333333……(重复)。不能将0.1表示为二进制浮点数的原因与此完全相同。你可以表示3 9和27,但不是1/3 1/9或1/27。

问题是3是质数,不是10的因数。当你想将一个数乘以3时,这不是一个问题:你总是可以乘以一个整数而不会遇到问题。但是当你除以一个质数而不是底数的因数时,你就会遇到麻烦(如果你试图用1除以这个数,你就会遇到麻烦)。

虽然0.1通常被用作精确十进制数的最简单例子,它不能用二进制浮点数精确表示,但可以说0.2是一个更简单的例子,因为它是1/5,而5是导致十进制和二进制之间存在问题的素数。


边注:处理有限表示的问题:

Some floating decimal point types have a fixed size like System.Decimal others like java.math.BigDecimal are "arbitrarily large" - but they'll hit a limit at some point, whether it's system memory or the theoretical maximum size of an array. This is an entirely separate point to the main one of this answer, however. Even if you had a genuinely arbitrarily large number of bits to play with, you still couldn't represent decimal 0.1 exactly in a floating binary point representation. Compare that with the other way round: given an arbitrary number of decimal digits, you can exactly represent any number which is exactly representable as a floating binary point.

分数和整数可以构成比例尺。有些分数,如1/7,如果没有很多很多的小数,就不能用十进制形式表示。因为浮点数是基于二进制的,所以特殊情况会发生变化,但同样的精度问题也会出现。

重复一下我在给斯基特先生的评论中所说的话:我们可以用十进制表示1/3、1/9、1/27或任何有理数。我们通过添加一个额外的符号来实现。例如,在数字的十进制展开中重复的数字上的一行。将十进制数表示为二进制数序列所需要的是1)一个二进制数序列,2)一个基数点,以及3)一些其他符号来表示序列的重复部分。

赫纳的引用符号就是一种方法。他用引号表示序列中重复的部分。文章地址:http://www.cs.toronto.edu/~hehner/ratno.pdf,维基百科词条:http://en.wikipedia.org/wiki/Quote_notation。

并没有说我们不能在表示系统中添加一个符号,所以我们可以用二进制引号表示十进制有理数,反之亦然。

有一个阈值,因为数字的含义已经从整数变成了非整数。要表示61,有6*10^1 + 1*10^0;10^1和10^0都是整数。6.1是6*10^0 + 1*10^-1,但10^-1是1/10,显然不是整数。这就是你在不精确镇的下场。