这个问题来自于对过去50年左右计算领域各种进展的评论。

其他一些与会者请我把这个问题作为一个问题向整个论坛提出。

这里的基本思想不是抨击事物的现状,而是试图理解提出基本新思想和原则的过程。

我认为我们在大多数计算领域都需要真正的新想法,我想知道最近已经完成的任何重要而有力的想法。如果我们真的找不到他们,那么我们应该问“为什么?”和“我们应该做什么?”


当前回答

比特币解决了双重消费问题。它被用来创造去中心化的电子货币。一个名为Namecoin的变体使用相同的技术来构建一个分散的命名系统(类似于DNS)。

过去曾有人试图创建加密货币(这个想法当然并不新鲜),但比特币似乎是第一个成功的实现。其独特的P2P算法在不依赖任何可信权威的情况下解决了双重花费问题。

其他回答

增强现实

真实世界的视图与虚拟元素以某种方式结合在一起。

“虚拟现实”一词出现于1989年,比“增强现实”一词出现早了几年。

一些早期的使能技术是在1980年之前发明的,但这个概念本身可以追溯到90年代初(至少维基百科是这么说的)。

http://en.wikipedia.org/wiki/Augmented_reality#History

我认为自20世纪80年代以来发明的最好的想法将是我们不知道的。要么是因为它们很小,无处不在,以至于不引人注意,要么是因为它们的受欢迎程度还没有真正起飞。

前者的一个例子是单击并拖动以选择文本的一部分。我相信这是1984年首次出现在麦金塔电脑上。在此之前,您有单独的按钮用于选择选择的开始和结束。相当繁重。

后者的一个例子是(可能是)可视化编程语言。我不是说像hypercard,我是说像Max/MSP, Prograph, Quartz Composer, yahoo pipes等。目前它们确实是小众的,但我认为,除了思想分享之外,没有什么能阻止它们像标准编程语言一样具有表现力和强大的功能。

可视化编程语言有效地加强了引用透明性的函数式编程范式。这对于代码来说是一个非常有用的属性。他们执行这一点的方式也不是人为的——这只是由于他们使用的比喻。

VPL让那些本来不会编程的人也能编程,比如有语言障碍的人,比如阅读困难的人,甚至只是需要简单节省时间的门外汉。专业程序员可能会对此嗤之以鼻,但就我个人而言,我认为如果编程成为一种真正无处不在的技能,就像识字一样,那就太好了。

就目前来看,VPL只是一个小众的兴趣,还没有真正成为主流。

我们应该做些什么不同的事情

all computer science majors should be required to double major- coupling the CS major with one of the humanities. Painting, literature, design, psychology, history, english, whatever. A lot of the problem is that the industry is populated with people that have a really narrow and unimaginative understanding of the world, and therefore can't begin to imagine a computer working any significantly differently than it already does. (if it helps, you can imagine that I'm talking about someone other than you, the person reading this.) Mathematics is great, but in the end it's just a tool for achieving. we need experts who understand the nature of creativity, who also understand technology.

But even if we have them, there needs to be an environment where there's a possibility that doing something new would be worth the risk. It's 100 times more likely that anything truly new gets rejected out of hand, rather viciously. (the newton is an example of this). so we need a much higher tolerance for failure. We should not be afraid to try an idea which has failed in the past. We should not fully reject our own failures- and we should learn to recognize when we have failed. We should not see failure as a bad thing, and so we shouldn't lie to ourselves or to others about it. We should just get used to it, because it is just about the only constant in this ever changing industry. Post mortems are useful in this regard.

One of the more interesting things, about smalltalk, I think, was not the language itself, but the process that was used to arrive at the design of smalltalk. The iterative design process, going through many many revisions- But also very carefully and critically identifying the flaws of the existing system, and finding solutions in the next one. The more perspectives, and the broader the perspectives we have on the situation, the better we can judge where the mistakes and problems are. So don't just study computer science. Study as many other academic subjects as you can get yourself to be interested in.

收缩包装软件

在1980年以前,软件大多是专门编写的。如果你经营一家企业,想要计算机化,你通常会有一台计算机、编译器和数据库,然后自己写东西。业务软件通常是为适应业务实践而编写的。这并不是说没有固定的软件(我在1980年之前使用SPSS),但这不是常态,我看到的往往是基础设施和研究软件。

现在,你可以去电脑商店,在货架上找到经营小生意所需的一切。它的设计并不是为了无缝地适应您曾经拥有的任何实践,但是一旦您学会或多或少地按照它的工作流程工作,它就会很好地工作。像SAP和仁科(PeopleSoft)这样的大企业比过去更接近于收缩包装。

这并不是一个彻底的突破,但在1980年之后,有一个非常明确的转变,从昂贵的定制软件到低成本的现成软件,灵活性从软件转移到业务流程。

它还影响了软件的经济性。定制软件解决方案可以盈利,但无法规模化。你只能向一个客户收取这么多钱,你不能把同样的东西卖给多个客户。使用收缩包装软件,你可以卖出很多很多相同的东西,在一个非常大的销售基础上摊销开发成本。(你必须提供支持,但这是有限度的。就当这是销售软件的边际成本吧。)

Theoretically, where there are big winners from a change, there are going to be losers. So far, the business of software has kept expanding, so that as areas become commoditized other areas open up. This is likely to come to an end sometime, and moderately talented developers will find themselves in a real crunch, unable to work for the big boys and crowded out of the market. (This presumably happens for other fields; I suspect the demand for accountants is much smaller than it would be without QuickBooks and the like.)

这是谷歌map-reduce的一个插件,不仅是为了它自己,也是谷歌在不可靠的商品机器农场上运行快速、可靠服务的成就的一个代理。这绝对是一项重要的发明,与1980年主导重量级计算的大型主机方法完全不同。

设计模式使计算机科学更接近计算机工程。 GPS和互联网地址查找基于位置的交互。 面向服务的体系结构。