我已经创建了一个熊猫数据框架

df = DataFrame(index=['A','B','C'], columns=['x','y'])

得到了这个

    x    y
A  NaN  NaN
B  NaN  NaN
C  NaN  NaN

现在,我想给特定的单元格赋值,例如给C行和x列赋值。 我希望得到这样的结果:

    x    y
A  NaN  NaN
B  NaN  NaN
C  10  NaN

下面的代码:

df.xs('C')['x'] = 10

但是df的内容没有改变。数据帧仍然只包含nan。

有什么建议吗?


当前回答

我也在搜索这个主题,我把一种方法放在一起,通过一个DataFrame迭代,并从第二个DataFrame更新查找值。这是我的代码。

src_df = pd.read_sql_query(src_sql,src_connection)
for index1, row1 in src_df.iterrows():
    for index, row in vertical_df.iterrows():
        src_df.set_value(index=index1,col=u'etl_load_key',value=etl_load_key)
        if (row1[u'src_id'] == row['SRC_ID']) is True:
            src_df.set_value(index=index1,col=u'vertical',value=row['VERTICAL'])

其他回答

我建议:

df.loc[index_position, "column_name"] = some_value

同时修改多个单元格:

df。loc[start_idx_pos: End_idx_pos, "column_name"] = some_value . loc[start_idx_pos: End_idx_pos, "column_name"] = some_value

尝试使用df。Loc [row_index,col_indexer] = value

你可以使用。iloc。

df.iloc[[2], [0]] = 10

苏,你的问题是将['x',C]的NaN转换为值10

答案是…

df['x'].loc['C':]=10
df

另一种代码是

df.loc['C', 'x']=10
df

从0.21.1版本开始,您还可以使用.at方法。与这里提到的.loc相比有一些不同- pandas .at与.loc,但它在单值替换上更快