我已经创建了一个熊猫数据框架

df = DataFrame(index=['A','B','C'], columns=['x','y'])

得到了这个

    x    y
A  NaN  NaN
B  NaN  NaN
C  NaN  NaN

现在,我想给特定的单元格赋值,例如给C行和x列赋值。 我希望得到这样的结果:

    x    y
A  NaN  NaN
B  NaN  NaN
C  10  NaN

下面的代码:

df.xs('C')['x'] = 10

但是df的内容没有改变。数据帧仍然只包含nan。

有什么建议吗?


当前回答

下面是所有用户提供的有效解决方案的摘要,用于以整数和字符串为索引的数据帧。

df。iloc, df。Loc和df。对于这两种类型的数据帧,df。Iloc仅适用于行/列整数索引df。Loc和df。At支持使用列名和/或整数索引设置值。

当指定的索引不存在时,df。Loc和df。At会将新插入的行/列追加到现有的数据帧,但df。iloc将引发“IndexError:位置索引器越界”。在Python 2.7和3.7中测试的工作示例如下:

import numpy as np, pandas as pd

df1 = pd.DataFrame(index=np.arange(3), columns=['x','y','z'])
df1['x'] = ['A','B','C']
df1.at[2,'y'] = 400

# rows/columns specified does not exist, appends new rows/columns to existing data frame
df1.at['D','w'] = 9000
df1.loc['E','q'] = 499

# using df[<some_column_name>] == <condition> to retrieve target rows
df1.at[df1['x']=='B', 'y'] = 10000
df1.loc[df1['x']=='B', ['z','w']] = 10000

# using a list of index to setup values
df1.iloc[[1,2,4], 2] = 9999
df1.loc[[0,'D','E'],'w'] = 7500
df1.at[[0,2,"D"],'x'] = 10
df1.at[:, ['y', 'w']] = 8000

df1
>>> df1
     x     y     z     w      q
0   10  8000   NaN  8000    NaN
1    B  8000  9999  8000    NaN
2   10  8000  9999  8000    NaN
D   10  8000   NaN  8000    NaN
E  NaN  8000  9999  8000  499.0

其他回答

从0.21.1版本开始,您还可以使用.at方法。与这里提到的.loc相比有一些不同- pandas .at与.loc,但它在单值替换上更快

使用index with condition的一种方法是首先获取满足条件的所有行的索引,然后简单地以多种方式使用这些行索引

conditional_index = df.loc[ df['col name'] <condition> ].index

示例条件如下

==5, >10 , =="Any string", >= DateTime

然后您可以以各种方式使用这些行索引,例如

替换conditional_index的一列值

df.loc[conditional_index , [col name]]= <new value>

替换conditional_index的多列值

df.loc[conditional_index, [col1,col2]]= <new value>

保存conditional_index的一个好处是,您可以将一个列的值分配给具有相同行索引的另一个列

df.loc[conditional_index, [col1,col2]]= df.loc[conditional_index,'col name']

这一切都是可能的,因为.index返回一个索引数组,.loc可以直接寻址,这样就避免了一次又一次的遍历。

已弃用Set_value()。

从0.23.4版本开始,Pandas“宣布了未来”…

>>> df
                   Cars  Prices (U$)
0               Audi TT        120.0
1 Lamborghini Aventador        245.0
2      Chevrolet Malibu        190.0
>>> df.set_value(2, 'Prices (U$)', 240.0)
__main__:1: FutureWarning: set_value is deprecated and will be removed in a future release.
Please use .at[] or .iat[] accessors instead

                   Cars  Prices (U$)
0               Audi TT        120.0
1 Lamborghini Aventador        245.0
2      Chevrolet Malibu        240.0

考虑到这些建议,以下是如何使用它们的演示:

按行/列整数位置


>>> df.iat[1, 1] = 260.0
>>> df
                   Cars  Prices (U$)
0               Audi TT        120.0
1 Lamborghini Aventador        260.0
2      Chevrolet Malibu        240.0

通过行/列标签


>>> df.at[2, "Cars"] = "Chevrolet Corvette"
>>> df
                  Cars  Prices (U$)
0               Audi TT        120.0
1 Lamborghini Aventador        260.0
2    Chevrolet Corvette        240.0

引用:

pandas.DataFrame.iat pandas.DataFrame.at

尝试使用df。Loc [row_index,col_indexer] = value

我测试了,输出是df。Set_value稍微快一点,但官方方法df。At看起来是最快的非弃用的方法。

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.rand(100, 100))

%timeit df.iat[50,50]=50 # ✓
%timeit df.at[50,50]=50 #  ✔
%timeit df.set_value(50,50,50) # will deprecate
%timeit df.iloc[50,50]=50
%timeit df.loc[50,50]=50

7.06 µs ± 118 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
5.52 µs ± 64.2 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
3.68 µs ± 80.8 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
98.7 µs ± 1.07 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
109 µs ± 1.42 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

注意,这是为单个单元格设置值。对于向量来说,loc和iloc应该是更好的选择,因为它们是向量化的。