我有一个熊猫数据帧,df:

   c1   c2
0  10  100
1  11  110
2  12  120

如何迭代此数据帧的行?对于每一行,我希望能够通过列的名称访问其元素(单元格中的值)。例如:

for row in df.rows:
    print(row['c1'], row['c2'])

我发现了一个类似的问题,建议使用以下任一项:

for date, row in df.T.iteritems():
for row in df.iterrows():

但我不知道row对象是什么,以及如何使用它。


当前回答

您还可以使用df.apply()来迭代行并访问函数的多个列。

docs:DataFrame.apply()

def valuation_formula(x, y):
    return x * y * 0.5

df['price'] = df.apply(lambda row: valuation_formula(row['x'], row['y']), axis=1)

其他回答

最简单的方法是使用apply函数

def print_row(row):
   print row['c1'], row['c2']

df.apply(lambda row: print_row(row), axis=1)

简言之

如果可能,使用矢量化如果操作无法矢量化,请使用列表综合如果需要一个表示整个行的对象,请使用itert元组如果以上步骤太慢,请尝试快速应用如果速度仍然太慢,试试赛马拉松的套路

基准

您可以编写自己的迭代器来实现namedtuple

from collections import namedtuple

def myiter(d, cols=None):
    if cols is None:
        v = d.values.tolist()
        cols = d.columns.values.tolist()
    else:
        j = [d.columns.get_loc(c) for c in cols]
        v = d.values[:, j].tolist()

    n = namedtuple('MyTuple', cols)

    for line in iter(v):
        yield n(*line)

这与pd.DataFrame.itertuples直接相当。我的目标是以更高的效率执行相同的任务。


对于具有我的函数的给定数据帧:

list(myiter(df))

[MyTuple(c1=10, c2=100), MyTuple(c1=11, c2=110), MyTuple(c1=12, c2=120)]

或使用pd.DataFrame.itertuples:

list(df.itertuples(index=False))

[Pandas(c1=10, c2=100), Pandas(c1=11, c2=110), Pandas(c1=12, c2=120)]

全面测试我们测试使所有列可用并对列进行子设置。

def iterfullA(d):
    return list(myiter(d))

def iterfullB(d):
    return list(d.itertuples(index=False))

def itersubA(d):
    return list(myiter(d, ['col3', 'col4', 'col5', 'col6', 'col7']))

def itersubB(d):
    return list(d[['col3', 'col4', 'col5', 'col6', 'col7']].itertuples(index=False))

res = pd.DataFrame(
    index=[10, 30, 100, 300, 1000, 3000, 10000, 30000],
    columns='iterfullA iterfullB itersubA itersubB'.split(),
    dtype=float
)

for i in res.index:
    d = pd.DataFrame(np.random.randint(10, size=(i, 10))).add_prefix('col')
    for j in res.columns:
        stmt = '{}(d)'.format(j)
        setp = 'from __main__ import d, {}'.format(j)
        res.at[i, j] = timeit(stmt, setp, number=100)

res.groupby(res.columns.str[4:-1], axis=1).plot(loglog=True);

对于查看和修改值,我将使用iterrows()。在for循环中,通过使用元组解包(参见示例:i,row),我使用行仅查看值,并在需要修改值时使用i和loc方法。正如前面的回答所述,这里您不应该修改正在迭代的内容。

for i, row in df.iterrows():
    df_column_A = df.loc[i, 'A']
    if df_column_A == 'Old_Value':
        df_column_A = 'New_value'  

在这里,循环中的行是该行的副本,而不是它的视图。因此,您不应该编写类似于行['a']='New_Value'的内容,它不会修改DataFrame。但是,您可以使用i和loc并指定DataFrame来完成这项工作。

您应该使用df.iterrows()。虽然逐行迭代不是特别有效,因为必须创建Series对象。