我只是想知道在Apache Spark中RDD和DataFrame (Spark 2.0.0 DataFrame只是数据集[行]的类型别名)之间的区别是什么?

你能把一个转换成另一个吗?


当前回答

因为DataFrame是弱类型的,开发人员没有得到类型系统的好处。例如,假设你想从SQL中读取一些东西,并对其运行一些聚合:

val people = sqlContext.read.parquet("...")
val department = sqlContext.read.parquet("...")

people.filter("age > 30")
  .join(department, people("deptId") === department("id"))
  .groupBy(department("name"), "gender")
  .agg(avg(people("salary")), max(people("age")))

当你说people("deptId")时,你得到的不是Int或Long对象,你得到的是你需要操作的Column对象。在具有丰富类型系统的语言(如Scala)中,您最终失去了所有类型安全,这增加了在编译时可以发现的运行时错误的数量。

相反,输入数据集[T]。当你这样做时:

val people: People = val people = sqlContext.read.parquet("...").as[People]

您实际上得到了一个People对象,其中deptId是一个实际的整型而不是列型,从而利用了类型系统。

从Spark 2.0开始,DataFrame和DataSet api将是统一的,其中DataFrame将是DataSet[Row]的类型别名。

其他回答

通过谷歌搜索“DataFrame definition”可以很好地定义一个DataFrame:

数据帧是一种表格,或者是一种二维的类似数组的结构 每一列包含对一个变量的测量,以及每一行 包含一个大小写。

因此,由于其表格格式,DataFrame具有额外的元数据,这允许Spark在最终查询上运行某些优化。

另一方面,RDD只是一个弹性分布式数据集(Resilient Distributed Dataset),它更像是一个数据黑箱,不能对其进行优化,因为可以对其执行的操作不受约束。

然而,你可以通过RDD方法从一个DataFrame到一个RDD,你也可以通过toDF方法从一个RDD到一个DataFrame(如果RDD是一个表格格式)

一般来说,由于内置的查询优化,建议尽可能使用DataFrame。

DataFrame相当于RDBMS中的表,也可以以类似于rdd中的“原生”分布式集合的方式进行操作。与rdd不同,dataframe跟踪模式并支持各种关系操作,从而实现更优化的执行。 每个DataFrame对象表示一个逻辑计划,但由于它们的“惰性”性质,直到用户调用特定的“输出操作”才会执行。

A DataFrame is an RDD that has a schema. You can think of it as a relational database table, in that each column has a name and a known type. The power of DataFrames comes from the fact that, when you create a DataFrame from a structured dataset (Json, Parquet..), Spark is able to infer a schema by making a pass over the entire (Json, Parquet..) dataset that's being loaded. Then, when calculating the execution plan, Spark, can use the schema and do substantially better computation optimizations. Note that DataFrame was called SchemaRDD before Spark v1.3.0

所有(RDD、DataFrame和DataSet)在一张图片中。

图片致谢

RDD

RDD是可以并行操作的元素的容错集合。

DataFrame

DataFrame是一个被组织成命名列的数据集。它是 概念上等价于关系数据库中的表或数据 框架,但是在底层有更丰富的优化。

数据集

数据集是数据的分布式集合。Dataset是Spark 1.6中新增的接口,提供rdd的优点 (强类型,能够使用强大的lambda函数) Spark SQL优化执行引擎的好处。 注意: 在Scala/Java中,Dataset of Rows (Dataset[Row])通常被称为DataFrames。


用一个代码片段对它们进行了很好的比较。


问:你能把一个转换成另一个,像RDD到DataFrame,反之亦然?

是的,两者都有可能

1. 使用.toDF() RDD到DataFrame

val rowsRdd: RDD[Row] = sc.parallelize(
  Seq(
    Row("first", 2.0, 7.0),
    Row("second", 3.5, 2.5),
    Row("third", 7.0, 5.9)
  )
)

val df = spark.createDataFrame(rowsRdd).toDF("id", "val1", "val2")

df.show()
+------+----+----+
|    id|val1|val2|
+------+----+----+
| first| 2.0| 7.0|
|second| 3.5| 2.5|
| third| 7.0| 5.9|
+------+----+----+

在Spark中将RDD对象转换为Dataframe

2. 使用.rdd()方法将DataFrame/DataSet转换为RDD

val rowsRdd: RDD[Row] = df.rdd() // DataFrame to RDD

Dataframe是Row对象的RDD,每个对象代表一条记录。一个 Dataframe还知道它的行的模式(即数据字段)。虽然Dataframes 看起来像常规的rdd,它们内部以更有效的方式存储数据,利用它们的模式。此外,它们还提供了rdd上不可用的新操作,例如运行SQL查询的能力。数据帧可以从外部数据源、查询结果或常规rdd中创建。

参考文献:Zaharia M., et al。学习火花(O'Reilly, 2015)