我只是想知道在Apache Spark中RDD和DataFrame (Spark 2.0.0 DataFrame只是数据集[行]的类型别名)之间的区别是什么?

你能把一个转换成另一个吗?


当前回答

Dataframe是Row对象的RDD,每个对象代表一条记录。一个 Dataframe还知道它的行的模式(即数据字段)。虽然Dataframes 看起来像常规的rdd,它们内部以更有效的方式存储数据,利用它们的模式。此外,它们还提供了rdd上不可用的新操作,例如运行SQL查询的能力。数据帧可以从外部数据源、查询结果或常规rdd中创建。

参考文献:Zaharia M., et al。学习火花(O'Reilly, 2015)

其他回答

大部分答案都是正确的,我只想补充一点

在Spark 2.0中,这两个API (DataFrame +DataSet)将统一为一个API。

统一DataFrame和Dataset:在Scala和Java中,DataFrame和Dataset是统一的,即DataFrame只是Dataset of Row的类型别名。在Python和R中,由于缺乏类型安全,DataFrame是主要的编程接口。”

数据集类似于rdd,但是,它们不使用Java序列化或Kryo,而是使用专门的Encoder来序列化对象,以便在网络上进行处理或传输。

Spark SQL支持两种将现有rdd转换为数据集的方法。第一种方法使用反射来推断包含特定类型对象的RDD的模式。这种基于反射的方法可以生成更简洁的代码,如果在编写Spark应用程序时已经知道模式,这种方法也能很好地工作。

创建数据集的第二种方法是通过编程接口,该接口允许您构造一个模式,然后将其应用于现有的RDD。虽然此方法更详细,但它允许您在运行时之前不知道列及其类型时构造数据集。

在这里你可以找到RDD tof数据帧对话的答案

如何将rdd对象转换为数据帧在火花

通过谷歌搜索“DataFrame definition”可以很好地定义一个DataFrame:

数据帧是一种表格,或者是一种二维的类似数组的结构 每一列包含对一个变量的测量,以及每一行 包含一个大小写。

因此,由于其表格格式,DataFrame具有额外的元数据,这允许Spark在最终查询上运行某些优化。

另一方面,RDD只是一个弹性分布式数据集(Resilient Distributed Dataset),它更像是一个数据黑箱,不能对其进行优化,因为可以对其执行的操作不受约束。

然而,你可以通过RDD方法从一个DataFrame到一个RDD,你也可以通过toDF方法从一个RDD到一个DataFrame(如果RDD是一个表格格式)

一般来说,由于内置的查询优化,建议尽可能使用DataFrame。

Apache Spark - RDD, DataFrame和DataSet

Spark RDD –

RDD代表弹性分布式数据集。只读 记录的分区集合。RDD是最基本的数据结构 的火花。它允许程序员在内存中执行计算 采用容错方式的大型集群。因此,加快任务的速度。

星火数据帧 –

与RDD不同,数据被组织成命名列。比如一张表 在关系数据库中。的不可变分布式集合 数据。Spark中的DataFrame允许开发人员在上面强加一个结构 数据的分布式集合,允许更高层次的抽象。

Spark数据集-

Apache Spark中的数据集是DataFrame API的扩展 提供类型安全的面向对象编程接口。数据集 通过暴露表达式来利用Spark的Catalyst优化器 和数据字段到查询计划器。

DataFrame相当于RDBMS中的表,也可以以类似于rdd中的“原生”分布式集合的方式进行操作。与rdd不同,dataframe跟踪模式并支持各种关系操作,从而实现更优化的执行。 每个DataFrame对象表示一个逻辑计划,但由于它们的“惰性”性质,直到用户调用特定的“输出操作”才会执行。

从使用的角度来看,RDD vs DataFrame:

RDDs are amazing! as they give us all the flexibility to deal with almost any kind of data; unstructured, semi structured and structured data. As, lot of times data is not ready to be fit into a DataFrame, (even JSON), RDDs can be used to do preprocessing on the data so that it can fit in a dataframe. RDDs are core data abstraction in Spark. Not all transformations that are possible on RDD are possible on DataFrames, example subtract() is for RDD vs except() is for DataFrame. Since DataFrames are like a relational table, they follow strict rules when using set/relational theory transformations, for example if you wanted to union two dataframes the requirement is that both dfs have same number of columns and associated column datatypes. Column names can be different. These rules don't apply to RDDs. Here is a good tutorial explaining these facts. There are performance gains when using DataFrames as others have already explained in depth. Using DataFrames you don't need to pass the arbitrary function as you do when programming with RDDs. You need the SQLContext/HiveContext to program dataframes as they lie in SparkSQL area of spark eco-system, but for RDD you only need SparkContext/JavaSparkContext which lie in Spark Core libraries. You can create a df from a RDD if you can define a schema for it. You can also convert a df to rdd and rdd to df.

我希望这能有所帮助!