我只是想知道在Apache Spark中RDD和DataFrame (Spark 2.0.0 DataFrame只是数据集[行]的类型别名)之间的区别是什么?

你能把一个转换成另一个吗?


当前回答

Spark RDD(弹性分布式数据集):

RDD is the core data abstraction API and is available since very first release of Spark (Spark 1.0). It is a lower-level API for manipulating distributed collection of data. The RDD APIs exposes some extremely useful methods which can be used to get very tight control over underlying physical data structure. It is an immutable (read only) collection of partitioned data distributed on different machines. RDD enables in-memory computation on large clusters to speed up big data processing in a fault tolerant manner. To enable fault tolerance, RDD uses DAG (Directed Acyclic Graph) which consists of a set of vertices and edges. The vertices and edges in DAG represent the RDD and the operation to be applied on that RDD respectively. The transformations defined on RDD are lazy and executes only when an action is called

Spark DataFrame

Spark 1.3 introduced two new data abstraction APIs – DataFrame and DataSet. The DataFrame APIs organizes the data into named columns like a table in relational database. It enables programmers to define schema on a distributed collection of data. Each row in a DataFrame is of object type row. Like an SQL table, each column must have same number of rows in a DataFrame. In short, DataFrame is lazily evaluated plan which specifies the operations needs to be performed on the distributed collection of the data. DataFrame is also an immutable collection.

Spark数据集:

作为DataFrame api的扩展,Spark 1.3还引入了DataSet api,在Spark中提供严格类型和面向对象的编程接口。它是不可变的、类型安全的分布式数据集合。像DataFrame一样,DataSet APIs也使用Catalyst引擎来实现执行优化。DataSet是DataFrame api的扩展。

〇其他差异

其他回答

Apache Spark - RDD, DataFrame和DataSet

Spark RDD –

RDD代表弹性分布式数据集。只读 记录的分区集合。RDD是最基本的数据结构 的火花。它允许程序员在内存中执行计算 采用容错方式的大型集群。因此,加快任务的速度。

星火数据帧 –

与RDD不同,数据被组织成命名列。比如一张表 在关系数据库中。的不可变分布式集合 数据。Spark中的DataFrame允许开发人员在上面强加一个结构 数据的分布式集合,允许更高层次的抽象。

Spark数据集-

Apache Spark中的数据集是DataFrame API的扩展 提供类型安全的面向对象编程接口。数据集 通过暴露表达式来利用Spark的Catalyst优化器 和数据字段到查询计划器。

一个。 RDD (Spark1.0) —> Dataframe(Spark1.3) —> Dataset(Spark1.6)

b. RDD让我们决定如何做,这限制了Spark在底层处理上的优化。dataframe/dataset让我们决定我们想做什么,并把一切都留给Spark来决定如何进行计算。

作为内存中的jvm对象,RDD涉及到垃圾收集和Java(或稍微好一点的Kryo)序列化的开销,当数据增长时,这些开销是昂贵的。这会降低性能。

数据帧比rdd提供了巨大的性能提升,因为它有2个强大的特性:

自定义内存管理(又名Project Tungsten) 优化的执行计划(又名Catalyst Optimizer) RDD ->数据帧->数据集

d.数据集(Project Tungsten和Catalyst Optimizer)如何在数据帧上得分是它拥有的另一个功能:编码器

所有(RDD、DataFrame和DataSet)在一张图片中。

图片致谢

RDD

RDD是可以并行操作的元素的容错集合。

DataFrame

DataFrame是一个被组织成命名列的数据集。它是 概念上等价于关系数据库中的表或数据 框架,但是在底层有更丰富的优化。

数据集

数据集是数据的分布式集合。Dataset是Spark 1.6中新增的接口,提供rdd的优点 (强类型,能够使用强大的lambda函数) Spark SQL优化执行引擎的好处。 注意: 在Scala/Java中,Dataset of Rows (Dataset[Row])通常被称为DataFrames。


用一个代码片段对它们进行了很好的比较。


问:你能把一个转换成另一个,像RDD到DataFrame,反之亦然?

是的,两者都有可能

1. 使用.toDF() RDD到DataFrame

val rowsRdd: RDD[Row] = sc.parallelize(
  Seq(
    Row("first", 2.0, 7.0),
    Row("second", 3.5, 2.5),
    Row("third", 7.0, 5.9)
  )
)

val df = spark.createDataFrame(rowsRdd).toDF("id", "val1", "val2")

df.show()
+------+----+----+
|    id|val1|val2|
+------+----+----+
| first| 2.0| 7.0|
|second| 3.5| 2.5|
| third| 7.0| 5.9|
+------+----+----+

在Spark中将RDD对象转换为Dataframe

2. 使用.rdd()方法将DataFrame/DataSet转换为RDD

val rowsRdd: RDD[Row] = df.rdd() // DataFrame to RDD

Spark RDD(弹性分布式数据集):

RDD is the core data abstraction API and is available since very first release of Spark (Spark 1.0). It is a lower-level API for manipulating distributed collection of data. The RDD APIs exposes some extremely useful methods which can be used to get very tight control over underlying physical data structure. It is an immutable (read only) collection of partitioned data distributed on different machines. RDD enables in-memory computation on large clusters to speed up big data processing in a fault tolerant manner. To enable fault tolerance, RDD uses DAG (Directed Acyclic Graph) which consists of a set of vertices and edges. The vertices and edges in DAG represent the RDD and the operation to be applied on that RDD respectively. The transformations defined on RDD are lazy and executes only when an action is called

Spark DataFrame

Spark 1.3 introduced two new data abstraction APIs – DataFrame and DataSet. The DataFrame APIs organizes the data into named columns like a table in relational database. It enables programmers to define schema on a distributed collection of data. Each row in a DataFrame is of object type row. Like an SQL table, each column must have same number of rows in a DataFrame. In short, DataFrame is lazily evaluated plan which specifies the operations needs to be performed on the distributed collection of the data. DataFrame is also an immutable collection.

Spark数据集:

作为DataFrame api的扩展,Spark 1.3还引入了DataSet api,在Spark中提供严格类型和面向对象的编程接口。它是不可变的、类型安全的分布式数据集合。像DataFrame一样,DataSet APIs也使用Catalyst引擎来实现执行优化。DataSet是DataFrame api的扩展。

〇其他差异

因为DataFrame是弱类型的,开发人员没有得到类型系统的好处。例如,假设你想从SQL中读取一些东西,并对其运行一些聚合:

val people = sqlContext.read.parquet("...")
val department = sqlContext.read.parquet("...")

people.filter("age > 30")
  .join(department, people("deptId") === department("id"))
  .groupBy(department("name"), "gender")
  .agg(avg(people("salary")), max(people("age")))

当你说people("deptId")时,你得到的不是Int或Long对象,你得到的是你需要操作的Column对象。在具有丰富类型系统的语言(如Scala)中,您最终失去了所有类型安全,这增加了在编译时可以发现的运行时错误的数量。

相反,输入数据集[T]。当你这样做时:

val people: People = val people = sqlContext.read.parquet("...").as[People]

您实际上得到了一个People对象,其中deptId是一个实际的整型而不是列型,从而利用了类型系统。

从Spark 2.0开始,DataFrame和DataSet api将是统一的,其中DataFrame将是DataSet[Row]的类型别名。