我只是想知道在Apache Spark中RDD和DataFrame (Spark 2.0.0 DataFrame只是数据集[行]的类型别名)之间的区别是什么?

你能把一个转换成另一个吗?


当前回答

从使用的角度来看,RDD vs DataFrame:

RDDs are amazing! as they give us all the flexibility to deal with almost any kind of data; unstructured, semi structured and structured data. As, lot of times data is not ready to be fit into a DataFrame, (even JSON), RDDs can be used to do preprocessing on the data so that it can fit in a dataframe. RDDs are core data abstraction in Spark. Not all transformations that are possible on RDD are possible on DataFrames, example subtract() is for RDD vs except() is for DataFrame. Since DataFrames are like a relational table, they follow strict rules when using set/relational theory transformations, for example if you wanted to union two dataframes the requirement is that both dfs have same number of columns and associated column datatypes. Column names can be different. These rules don't apply to RDDs. Here is a good tutorial explaining these facts. There are performance gains when using DataFrames as others have already explained in depth. Using DataFrames you don't need to pass the arbitrary function as you do when programming with RDDs. You need the SQLContext/HiveContext to program dataframes as they lie in SparkSQL area of spark eco-system, but for RDD you only need SparkContext/JavaSparkContext which lie in Spark Core libraries. You can create a df from a RDD if you can define a schema for it. You can also convert a df to rdd and rdd to df.

我希望这能有所帮助!

其他回答

一个。 RDD (Spark1.0) —> Dataframe(Spark1.3) —> Dataset(Spark1.6)

b. RDD让我们决定如何做,这限制了Spark在底层处理上的优化。dataframe/dataset让我们决定我们想做什么,并把一切都留给Spark来决定如何进行计算。

作为内存中的jvm对象,RDD涉及到垃圾收集和Java(或稍微好一点的Kryo)序列化的开销,当数据增长时,这些开销是昂贵的。这会降低性能。

数据帧比rdd提供了巨大的性能提升,因为它有2个强大的特性:

自定义内存管理(又名Project Tungsten) 优化的执行计划(又名Catalyst Optimizer) RDD ->数据帧->数据集

d.数据集(Project Tungsten和Catalyst Optimizer)如何在数据帧上得分是它拥有的另一个功能:编码器

因为DataFrame是弱类型的,开发人员没有得到类型系统的好处。例如,假设你想从SQL中读取一些东西,并对其运行一些聚合:

val people = sqlContext.read.parquet("...")
val department = sqlContext.read.parquet("...")

people.filter("age > 30")
  .join(department, people("deptId") === department("id"))
  .groupBy(department("name"), "gender")
  .agg(avg(people("salary")), max(people("age")))

当你说people("deptId")时,你得到的不是Int或Long对象,你得到的是你需要操作的Column对象。在具有丰富类型系统的语言(如Scala)中,您最终失去了所有类型安全,这增加了在编译时可以发现的运行时错误的数量。

相反,输入数据集[T]。当你这样做时:

val people: People = val people = sqlContext.read.parquet("...").as[People]

您实际上得到了一个People对象,其中deptId是一个实际的整型而不是列型,从而利用了类型系统。

从Spark 2.0开始,DataFrame和DataSet api将是统一的,其中DataFrame将是DataSet[Row]的类型别名。

所有(RDD、DataFrame和DataSet)在一张图片中。

图片致谢

RDD

RDD是可以并行操作的元素的容错集合。

DataFrame

DataFrame是一个被组织成命名列的数据集。它是 概念上等价于关系数据库中的表或数据 框架,但是在底层有更丰富的优化。

数据集

数据集是数据的分布式集合。Dataset是Spark 1.6中新增的接口,提供rdd的优点 (强类型,能够使用强大的lambda函数) Spark SQL优化执行引擎的好处。 注意: 在Scala/Java中,Dataset of Rows (Dataset[Row])通常被称为DataFrames。


用一个代码片段对它们进行了很好的比较。


问:你能把一个转换成另一个,像RDD到DataFrame,反之亦然?

是的,两者都有可能

1. 使用.toDF() RDD到DataFrame

val rowsRdd: RDD[Row] = sc.parallelize(
  Seq(
    Row("first", 2.0, 7.0),
    Row("second", 3.5, 2.5),
    Row("third", 7.0, 5.9)
  )
)

val df = spark.createDataFrame(rowsRdd).toDF("id", "val1", "val2")

df.show()
+------+----+----+
|    id|val1|val2|
+------+----+----+
| first| 2.0| 7.0|
|second| 3.5| 2.5|
| third| 7.0| 5.9|
+------+----+----+

在Spark中将RDD对象转换为Dataframe

2. 使用.rdd()方法将DataFrame/DataSet转换为RDD

val rowsRdd: RDD[Row] = df.rdd() // DataFrame to RDD

大部分答案都是正确的,我只想补充一点

在Spark 2.0中,这两个API (DataFrame +DataSet)将统一为一个API。

统一DataFrame和Dataset:在Scala和Java中,DataFrame和Dataset是统一的,即DataFrame只是Dataset of Row的类型别名。在Python和R中,由于缺乏类型安全,DataFrame是主要的编程接口。”

数据集类似于rdd,但是,它们不使用Java序列化或Kryo,而是使用专门的Encoder来序列化对象,以便在网络上进行处理或传输。

Spark SQL支持两种将现有rdd转换为数据集的方法。第一种方法使用反射来推断包含特定类型对象的RDD的模式。这种基于反射的方法可以生成更简洁的代码,如果在编写Spark应用程序时已经知道模式,这种方法也能很好地工作。

创建数据集的第二种方法是通过编程接口,该接口允许您构造一个模式,然后将其应用于现有的RDD。虽然此方法更详细,但它允许您在运行时之前不知道列及其类型时构造数据集。

在这里你可以找到RDD tof数据帧对话的答案

如何将rdd对象转换为数据帧在火花

简单地说,RDD是核心组件,而DataFrame是spark 1.30引入的API。

RDD

数据分区的集合,称为RDD。这些RDD必须遵循以下几个属性:

不可变的, 容错, 分布式的, 更多。

这里RDD是结构化的或非结构化的。

DataFrame

DataFrame是Scala、Java、Python和r中可用的API,它允许处理任何类型的结构化和半结构化数据。要定义DataFrame,一个被组织成命名列的分布式数据集合,称为DataFrame。您可以很容易地优化DataFrame中的rdd。 您可以使用DataFrame一次处理JSON数据,parquet数据,HiveQL数据。

val sampleRDD = sqlContext.jsonFile("hdfs://localhost:9000/jsondata.json")

val sample_DF = sampleRDD.toDF()

这里Sample_DF被认为是DataFrame。sampleRDD(原始数据)称为RDD。