我只是想知道在Apache Spark中RDD和DataFrame (Spark 2.0.0 DataFrame只是数据集[行]的类型别名)之间的区别是什么?

你能把一个转换成另一个吗?


当前回答

首先,DataFrame是从SchemaRDD演变而来的。

是的. .Dataframe和RDD之间的转换是绝对可能的。

下面是一些示例代码片段。

df。rdd就是rdd [Row]

下面是一些创建数据框架的选项。

1) yourrddOffrow。toDF转换为DataFrame。 2)使用sql context的createDataFrame Val df = spark。createDataFrame (rddOfRow模式)

where schema can be from some of below options as described by nice SO post.. From scala case class and scala reflection api import org.apache.spark.sql.catalyst.ScalaReflection val schema = ScalaReflection.schemaFor[YourScalacaseClass].dataType.asInstanceOf[StructType] OR using Encoders import org.apache.spark.sql.Encoders val mySchema = Encoders.product[MyCaseClass].schema as described by Schema can also be created using StructType and StructField val schema = new StructType() .add(StructField("id", StringType, true)) .add(StructField("col1", DoubleType, true)) .add(StructField("col2", DoubleType, true)) etc...

事实上,现在有3个Apache Spark api ..

火灾等级:

The RDD (Resilient Distributed Dataset) API has been in Spark since the 1.0 release. The RDD API provides many transformation methods, such as map(), filter(), and reduce() for performing computations on the data. Each of these methods results in a new RDD representing the transformed data. However, these methods are just defining the operations to be performed and the transformations are not performed until an action method is called. Examples of action methods are collect() and saveAsObjectFile().

抽样的例子:

rdd.filter(_.age > 21) // transformation
   .map(_.last)// transformation
.saveAsObjectFile("under21.bin") // action

示例:RDD按属性过滤

rdd.filter(_.age > 21)

DataFrame火

Spark 1.3 introduced a new DataFrame API as part of the Project Tungsten initiative which seeks to improve the performance and scalability of Spark. The DataFrame API introduces the concept of a schema to describe the data, allowing Spark to manage the schema and only pass data between nodes, in a much more efficient way than using Java serialization. The DataFrame API is radically different from the RDD API because it is an API for building a relational query plan that Spark’s Catalyst optimizer can then execute. The API is natural for developers who are familiar with building query plans

示例SQL样式:

df。Filter ("age > 21");

限制: 因为代码是按名称引用数据属性的,所以编译器不可能捕捉到任何错误。如果属性名不正确,则只有在运行时创建查询计划时才会检测到错误。

DataFrame API的另一个缺点是它非常以scala为中心,虽然它确实支持Java,但支持是有限的。

例如,当从现有的Java对象RDD创建DataFrame时,Spark的Catalyst优化器无法推断模式,并假设DataFrame中的任何对象都实现了scala。产品界面。Scala case类解决了这个问题,因为它们实现了这个接口。

数据集火

The Dataset API, released as an API preview in Spark 1.6, aims to provide the best of both worlds; the familiar object-oriented programming style and compile-time type-safety of the RDD API but with the performance benefits of the Catalyst query optimizer. Datasets also use the same efficient off-heap storage mechanism as the DataFrame API. When it comes to serializing data, the Dataset API has the concept of encoders which translate between JVM representations (objects) and Spark’s internal binary format. Spark has built-in encoders which are very advanced in that they generate byte code to interact with off-heap data and provide on-demand access to individual attributes without having to de-serialize an entire object. Spark does not yet provide an API for implementing custom encoders, but that is planned for a future release. Additionally, the Dataset API is designed to work equally well with both Java and Scala. When working with Java objects, it is important that they are fully bean-compliant.

示例数据集API SQL样式:

dataset.filter(_.age < 21);

DataFrame和DataSet之间的评估不同:

阴极级流..(解密spark峰会上的数据框架和数据集演示)

进一步阅读…databricks文章-三个Apache Spark api的故事:rdd vs dataframe和数据集

其他回答

Apache Spark提供了三种类型的api

抽样 DataFrame 数据集

这里是RDD, Dataframe和Dataset之间的api比较。

RDD

Spark提供的主要抽象是一个弹性分布式数据集(RDD),它是跨集群节点划分的元素集合,可以并行操作。

抽样特性:

Distributed collection: RDD uses MapReduce operations which is widely adopted for processing and generating large datasets with a parallel, distributed algorithm on a cluster. It allows users to write parallel computations, using a set of high-level operators, without having to worry about work distribution and fault tolerance. Immutable: RDDs composed of a collection of records which are partitioned. A partition is a basic unit of parallelism in an RDD, and each partition is one logical division of data which is immutable and created through some transformations on existing partitions.Immutability helps to achieve consistency in computations. Fault tolerant: In a case of we lose some partition of RDD , we can replay the transformation on that partition in lineage to achieve the same computation, rather than doing data replication across multiple nodes.This characteristic is the biggest benefit of RDD because it saves a lot of efforts in data management and replication and thus achieves faster computations. Lazy evaluations: All transformations in Spark are lazy, in that they do not compute their results right away. Instead, they just remember the transformations applied to some base dataset . The transformations are only computed when an action requires a result to be returned to the driver program. Functional transformations: RDDs support two types of operations: transformations, which create a new dataset from an existing one, and actions, which return a value to the driver program after running a computation on the dataset. Data processing formats: It can easily and efficiently process data which is structured as well as unstructured data. Programming Languages supported: RDD API is available in Java, Scala, Python and R.

抽样的局限性:

没有内置优化引擎: 在处理结构化数据时,rdd无法利用Spark的高级优化器,包括catalyst优化器和Tungsten执行引擎。开发人员需要根据每个RDD的属性来优化它。 处理结构化数据: 与Dataframe和数据集不同,rdd不推断所摄取数据的模式,并要求用户指定它。

Dataframes

Spark在Spark 1.3版本中引入了Dataframes。Dataframe克服了rdd所面临的主要挑战。

DataFrame是一个分布式的数据集合,它被组织成命名的列。它在概念上等同于关系数据库或R/Python Dataframe中的表。除了Dataframe, Spark还引入了catalyst优化器,它利用高级编程特性来构建可扩展的查询优化器。

Dataframe特点:-

Distributed collection of Row Object: A DataFrame is a distributed collection of data organized into named columns. It is conceptually equivalent to a table in a relational database, but with richer optimizations under the hood. Data Processing: Processing structured and unstructured data formats (Avro, CSV, elastic search, and Cassandra) and storage systems (HDFS, HIVE tables, MySQL, etc). It can read and write from all these various datasources. Optimization using catalyst optimizer: It powers both SQL queries and the DataFrame API. Dataframe use catalyst tree transformation framework in four phases, 1.Analyzing a logical plan to resolve references 2.Logical plan optimization 3.Physical planning 4.Code generation to compile parts of the query to Java bytecode. Hive Compatibility: Using Spark SQL, you can run unmodified Hive queries on your existing Hive warehouses. It reuses Hive frontend and MetaStore and gives you full compatibility with existing Hive data, queries, and UDFs. Tungsten: Tungsten provides a physical execution backend whichexplicitly manages memory and dynamically generates bytecode for expression evaluation. Programming Languages supported: Dataframe API is available in Java, Scala, Python, and R.

Dataframe限制:

编译时类型安全: 如前所述,Dataframe API不支持编译时安全,这限制了你在不知道结构时操作数据。下面的示例在编译时工作。但是,在执行这段代码时,您将得到一个运行时异常。

例子:

case class Person(name : String , age : Int) 
val dataframe = sqlContext.read.json("people.json") 
dataframe.filter("salary > 10000").show 
=> throws Exception : cannot resolve 'salary' given input age , name

这很有挑战性,特别是当您正在处理多个转换和聚合步骤时。

无法操作域对象(丢失域对象): 一旦将域对象转换为数据框架,就不能从中重新生成数据框架。在下面的例子中,一旦我们从personRDD创建了personDF,我们将不会恢复Person类的原始RDD (RDD[Person])。

例子:

case class Person(name : String , age : Int)
val personRDD = sc.makeRDD(Seq(Person("A",10),Person("B",20)))
val personDF = sqlContext.createDataframe(personRDD)
personDF.rdd // returns RDD[Row] , does not returns RDD[Person]

Datasets火

Dataset API is an extension to DataFrames that provides a type-safe, object-oriented programming interface. It is a strongly-typed, immutable collection of objects that are mapped to a relational schema. At the core of the Dataset, API is a new concept called an encoder, which is responsible for converting between JVM objects and tabular representation. The tabular representation is stored using Spark internal Tungsten binary format, allowing for operations on serialized data and improved memory utilization. Spark 1.6 comes with support for automatically generating encoders for a wide variety of types, including primitive types (e.g. String, Integer, Long), Scala case classes, and Java Beans.

数据集的特性:

Provides best of both RDD and Dataframe: RDD(functional programming, type safe), DataFrame (relational model, Query optimazation , Tungsten execution, sorting and shuffling) Encoders: With the use of Encoders, it is easy to convert any JVM object into a Dataset, allowing users to work with both structured and unstructured data unlike Dataframe. Programming Languages supported: Datasets API is currently only available in Scala and Java. Python and R are currently not supported in version 1.6. Python support is slated for version 2.0. Type Safety: Datasets API provides compile time safety which was not available in Dataframes. In the example below, we can see how Dataset can operate on domain objects with compile lambda functions.

例子:

case class Person(name : String , age : Int)
val personRDD = sc.makeRDD(Seq(Person("A",10),Person("B",20)))
val personDF = sqlContext.createDataframe(personRDD)
val ds:Dataset[Person] = personDF.as[Person]
ds.filter(p => p.age > 25)
ds.filter(p => p.salary > 25)
 // error : value salary is not a member of person
ds.rdd // returns RDD[Person]

互操作:数据集允许您轻松地将现有的rdd和dataframe转换为数据集,而无需样板代码。

数据集API限制:-

需要类型转换为字符串: 目前从数据集中查询数据需要我们将类中的字段指定为字符串。查询完数据后,必须将列强制转换为所需的数据类型。另一方面,如果我们在数据集上使用map操作,它将不会使用Catalyst优化器。

例子:

ds.select(col("name").as[String], $"age".as[Int]).collect()

不支持Python和R:从1.6版开始,数据集只支持Scala和Java。Python支持将在Spark 2.0中引入。

Datasets API与现有的RDD和Dataframe API相比,具有更好的类型安全性和函数式编程优势。面对API中类型强制转换需求的挑战,您仍然无法获得所需的类型安全性,并将使您的代码变得脆弱。

通过谷歌搜索“DataFrame definition”可以很好地定义一个DataFrame:

数据帧是一种表格,或者是一种二维的类似数组的结构 每一列包含对一个变量的测量,以及每一行 包含一个大小写。

因此,由于其表格格式,DataFrame具有额外的元数据,这允许Spark在最终查询上运行某些优化。

另一方面,RDD只是一个弹性分布式数据集(Resilient Distributed Dataset),它更像是一个数据黑箱,不能对其进行优化,因为可以对其执行的操作不受约束。

然而,你可以通过RDD方法从一个DataFrame到一个RDD,你也可以通过toDF方法从一个RDD到一个DataFrame(如果RDD是一个表格格式)

一般来说,由于内置的查询优化,建议尽可能使用DataFrame。

A DataFrame is an RDD that has a schema. You can think of it as a relational database table, in that each column has a name and a known type. The power of DataFrames comes from the fact that, when you create a DataFrame from a structured dataset (Json, Parquet..), Spark is able to infer a schema by making a pass over the entire (Json, Parquet..) dataset that's being loaded. Then, when calculating the execution plan, Spark, can use the schema and do substantially better computation optimizations. Note that DataFrame was called SchemaRDD before Spark v1.3.0

因为DataFrame是弱类型的,开发人员没有得到类型系统的好处。例如,假设你想从SQL中读取一些东西,并对其运行一些聚合:

val people = sqlContext.read.parquet("...")
val department = sqlContext.read.parquet("...")

people.filter("age > 30")
  .join(department, people("deptId") === department("id"))
  .groupBy(department("name"), "gender")
  .agg(avg(people("salary")), max(people("age")))

当你说people("deptId")时,你得到的不是Int或Long对象,你得到的是你需要操作的Column对象。在具有丰富类型系统的语言(如Scala)中,您最终失去了所有类型安全,这增加了在编译时可以发现的运行时错误的数量。

相反,输入数据集[T]。当你这样做时:

val people: People = val people = sqlContext.read.parquet("...").as[People]

您实际上得到了一个People对象,其中deptId是一个实际的整型而不是列型,从而利用了类型系统。

从Spark 2.0开始,DataFrame和DataSet api将是统一的,其中DataFrame将是DataSet[Row]的类型别名。

从使用的角度来看,RDD vs DataFrame:

RDDs are amazing! as they give us all the flexibility to deal with almost any kind of data; unstructured, semi structured and structured data. As, lot of times data is not ready to be fit into a DataFrame, (even JSON), RDDs can be used to do preprocessing on the data so that it can fit in a dataframe. RDDs are core data abstraction in Spark. Not all transformations that are possible on RDD are possible on DataFrames, example subtract() is for RDD vs except() is for DataFrame. Since DataFrames are like a relational table, they follow strict rules when using set/relational theory transformations, for example if you wanted to union two dataframes the requirement is that both dfs have same number of columns and associated column datatypes. Column names can be different. These rules don't apply to RDDs. Here is a good tutorial explaining these facts. There are performance gains when using DataFrames as others have already explained in depth. Using DataFrames you don't need to pass the arbitrary function as you do when programming with RDDs. You need the SQLContext/HiveContext to program dataframes as they lie in SparkSQL area of spark eco-system, but for RDD you only need SparkContext/JavaSparkContext which lie in Spark Core libraries. You can create a df from a RDD if you can define a schema for it. You can also convert a df to rdd and rdd to df.

我希望这能有所帮助!