我只是想知道在Apache Spark中RDD和DataFrame (Spark 2.0.0 DataFrame只是数据集[行]的类型别名)之间的区别是什么?
你能把一个转换成另一个吗?
我只是想知道在Apache Spark中RDD和DataFrame (Spark 2.0.0 DataFrame只是数据集[行]的类型别名)之间的区别是什么?
你能把一个转换成另一个吗?
当前回答
首先,DataFrame是从SchemaRDD演变而来的。
是的. .Dataframe和RDD之间的转换是绝对可能的。
下面是一些示例代码片段。
df。rdd就是rdd [Row]
下面是一些创建数据框架的选项。
1) yourrddOffrow。toDF转换为DataFrame。 2)使用sql context的createDataFrame Val df = spark。createDataFrame (rddOfRow模式)
where schema can be from some of below options as described by nice SO post.. From scala case class and scala reflection api import org.apache.spark.sql.catalyst.ScalaReflection val schema = ScalaReflection.schemaFor[YourScalacaseClass].dataType.asInstanceOf[StructType] OR using Encoders import org.apache.spark.sql.Encoders val mySchema = Encoders.product[MyCaseClass].schema as described by Schema can also be created using StructType and StructField val schema = new StructType() .add(StructField("id", StringType, true)) .add(StructField("col1", DoubleType, true)) .add(StructField("col2", DoubleType, true)) etc...
事实上,现在有3个Apache Spark api ..
火灾等级:
The RDD (Resilient Distributed Dataset) API has been in Spark since the 1.0 release. The RDD API provides many transformation methods, such as map(), filter(), and reduce() for performing computations on the data. Each of these methods results in a new RDD representing the transformed data. However, these methods are just defining the operations to be performed and the transformations are not performed until an action method is called. Examples of action methods are collect() and saveAsObjectFile().
抽样的例子:
rdd.filter(_.age > 21) // transformation
.map(_.last)// transformation
.saveAsObjectFile("under21.bin") // action
示例:RDD按属性过滤
rdd.filter(_.age > 21)
DataFrame火
Spark 1.3 introduced a new DataFrame API as part of the Project Tungsten initiative which seeks to improve the performance and scalability of Spark. The DataFrame API introduces the concept of a schema to describe the data, allowing Spark to manage the schema and only pass data between nodes, in a much more efficient way than using Java serialization. The DataFrame API is radically different from the RDD API because it is an API for building a relational query plan that Spark’s Catalyst optimizer can then execute. The API is natural for developers who are familiar with building query plans
示例SQL样式:
df。Filter ("age > 21");
限制: 因为代码是按名称引用数据属性的,所以编译器不可能捕捉到任何错误。如果属性名不正确,则只有在运行时创建查询计划时才会检测到错误。
DataFrame API的另一个缺点是它非常以scala为中心,虽然它确实支持Java,但支持是有限的。
例如,当从现有的Java对象RDD创建DataFrame时,Spark的Catalyst优化器无法推断模式,并假设DataFrame中的任何对象都实现了scala。产品界面。Scala case类解决了这个问题,因为它们实现了这个接口。
数据集火
The Dataset API, released as an API preview in Spark 1.6, aims to provide the best of both worlds; the familiar object-oriented programming style and compile-time type-safety of the RDD API but with the performance benefits of the Catalyst query optimizer. Datasets also use the same efficient off-heap storage mechanism as the DataFrame API. When it comes to serializing data, the Dataset API has the concept of encoders which translate between JVM representations (objects) and Spark’s internal binary format. Spark has built-in encoders which are very advanced in that they generate byte code to interact with off-heap data and provide on-demand access to individual attributes without having to de-serialize an entire object. Spark does not yet provide an API for implementing custom encoders, but that is planned for a future release. Additionally, the Dataset API is designed to work equally well with both Java and Scala. When working with Java objects, it is important that they are fully bean-compliant.
示例数据集API SQL样式:
dataset.filter(_.age < 21);
DataFrame和DataSet之间的评估不同:
阴极级流..(解密spark峰会上的数据框架和数据集演示)
进一步阅读…databricks文章-三个Apache Spark api的故事:rdd vs dataframe和数据集
其他回答
从使用的角度来看,RDD vs DataFrame:
RDDs are amazing! as they give us all the flexibility to deal with almost any kind of data; unstructured, semi structured and structured data. As, lot of times data is not ready to be fit into a DataFrame, (even JSON), RDDs can be used to do preprocessing on the data so that it can fit in a dataframe. RDDs are core data abstraction in Spark. Not all transformations that are possible on RDD are possible on DataFrames, example subtract() is for RDD vs except() is for DataFrame. Since DataFrames are like a relational table, they follow strict rules when using set/relational theory transformations, for example if you wanted to union two dataframes the requirement is that both dfs have same number of columns and associated column datatypes. Column names can be different. These rules don't apply to RDDs. Here is a good tutorial explaining these facts. There are performance gains when using DataFrames as others have already explained in depth. Using DataFrames you don't need to pass the arbitrary function as you do when programming with RDDs. You need the SQLContext/HiveContext to program dataframes as they lie in SparkSQL area of spark eco-system, but for RDD you only need SparkContext/JavaSparkContext which lie in Spark Core libraries. You can create a df from a RDD if you can define a schema for it. You can also convert a df to rdd and rdd to df.
我希望这能有所帮助!
所有(RDD、DataFrame和DataSet)在一张图片中。
图片致谢
RDD
RDD是可以并行操作的元素的容错集合。
DataFrame
DataFrame是一个被组织成命名列的数据集。它是 概念上等价于关系数据库中的表或数据 框架,但是在底层有更丰富的优化。
数据集
数据集是数据的分布式集合。Dataset是Spark 1.6中新增的接口,提供rdd的优点 (强类型,能够使用强大的lambda函数) Spark SQL优化执行引擎的好处。 注意: 在Scala/Java中,Dataset of Rows (Dataset[Row])通常被称为DataFrames。
用一个代码片段对它们进行了很好的比较。
源
问:你能把一个转换成另一个,像RDD到DataFrame,反之亦然?
是的,两者都有可能
1. 使用.toDF() RDD到DataFrame
val rowsRdd: RDD[Row] = sc.parallelize(
Seq(
Row("first", 2.0, 7.0),
Row("second", 3.5, 2.5),
Row("third", 7.0, 5.9)
)
)
val df = spark.createDataFrame(rowsRdd).toDF("id", "val1", "val2")
df.show()
+------+----+----+
| id|val1|val2|
+------+----+----+
| first| 2.0| 7.0|
|second| 3.5| 2.5|
| third| 7.0| 5.9|
+------+----+----+
在Spark中将RDD对象转换为Dataframe
2. 使用.rdd()方法将DataFrame/DataSet转换为RDD
val rowsRdd: RDD[Row] = df.rdd() // DataFrame to RDD
简单地说,RDD是核心组件,而DataFrame是spark 1.30引入的API。
RDD
数据分区的集合,称为RDD。这些RDD必须遵循以下几个属性:
不可变的, 容错, 分布式的, 更多。
这里RDD是结构化的或非结构化的。
DataFrame
DataFrame是Scala、Java、Python和r中可用的API,它允许处理任何类型的结构化和半结构化数据。要定义DataFrame,一个被组织成命名列的分布式数据集合,称为DataFrame。您可以很容易地优化DataFrame中的rdd。 您可以使用DataFrame一次处理JSON数据,parquet数据,HiveQL数据。
val sampleRDD = sqlContext.jsonFile("hdfs://localhost:9000/jsondata.json")
val sample_DF = sampleRDD.toDF()
这里Sample_DF被认为是DataFrame。sampleRDD(原始数据)称为RDD。
Dataframe是Row对象的RDD,每个对象代表一条记录。一个 Dataframe还知道它的行的模式(即数据字段)。虽然Dataframes 看起来像常规的rdd,它们内部以更有效的方式存储数据,利用它们的模式。此外,它们还提供了rdd上不可用的新操作,例如运行SQL查询的能力。数据帧可以从外部数据源、查询结果或常规rdd中创建。
参考文献:Zaharia M., et al。学习火花(O'Reilly, 2015)
大部分答案都是正确的,我只想补充一点
在Spark 2.0中,这两个API (DataFrame +DataSet)将统一为一个API。
统一DataFrame和Dataset:在Scala和Java中,DataFrame和Dataset是统一的,即DataFrame只是Dataset of Row的类型别名。在Python和R中,由于缺乏类型安全,DataFrame是主要的编程接口。”
数据集类似于rdd,但是,它们不使用Java序列化或Kryo,而是使用专门的Encoder来序列化对象,以便在网络上进行处理或传输。
Spark SQL支持两种将现有rdd转换为数据集的方法。第一种方法使用反射来推断包含特定类型对象的RDD的模式。这种基于反射的方法可以生成更简洁的代码,如果在编写Spark应用程序时已经知道模式,这种方法也能很好地工作。
创建数据集的第二种方法是通过编程接口,该接口允许您构造一个模式,然后将其应用于现有的RDD。虽然此方法更详细,但它允许您在运行时之前不知道列及其类型时构造数据集。
在这里你可以找到RDD tof数据帧对话的答案
如何将rdd对象转换为数据帧在火花