我用一个文件中的数据创建了一个直方图,没有问题。现在我想在同一直方图中叠加来自另一个文件的数据,所以我这样做
n,bins,patchs = ax.hist(mydata1,100)
n,bins,patchs = ax.hist(mydata2,100)
但问题是,对于每个区间,只有最高值的条出现,而另一个条被隐藏。我想知道如何用不同的颜色同时绘制两个直方图。
我用一个文件中的数据创建了一个直方图,没有问题。现在我想在同一直方图中叠加来自另一个文件的数据,所以我这样做
n,bins,patchs = ax.hist(mydata1,100)
n,bins,patchs = ax.hist(mydata2,100)
但问题是,对于每个区间,只有最高值的条出现,而另一个条被隐藏。我想知道如何用不同的颜色同时绘制两个直方图。
当前回答
受到Solomon的答案的启发,但要坚持这个与直方图有关的问题,一个干净的解决方案是:
sns.distplot(bar)
sns.distplot(foo)
plt.show()
确保先绘制较高的直方图,否则需要设置plot .ylim(0,0.45),这样较高的直方图就不会被切掉。
其他回答
在有不同样本量的情况下,用单个y轴比较分布可能很困难。例如:
import numpy as np
import matplotlib.pyplot as plt
#makes the data
y1 = np.random.normal(-2, 2, 1000)
y2 = np.random.normal(2, 2, 5000)
colors = ['b','g']
#plots the histogram
fig, ax1 = plt.subplots()
ax1.hist([y1,y2],color=colors)
ax1.set_xlim(-10,10)
ax1.set_ylabel("Count")
plt.tight_layout()
plt.show()
在这种情况下,您可以在不同的轴上绘制两个数据集。为此,你可以使用matplotlib获取直方图数据,清除轴,然后在两个单独的轴上重新绘制它(移动bin边,使它们不重叠):
#sets up the axis and gets histogram data
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
ax1.hist([y1, y2], color=colors)
n, bins, patches = ax1.hist([y1,y2])
ax1.cla() #clear the axis
#plots the histogram data
width = (bins[1] - bins[0]) * 0.4
bins_shifted = bins + width
ax1.bar(bins[:-1], n[0], width, align='edge', color=colors[0])
ax2.bar(bins_shifted[:-1], n[1], width, align='edge', color=colors[1])
#finishes the plot
ax1.set_ylabel("Count", color=colors[0])
ax2.set_ylabel("Count", color=colors[1])
ax1.tick_params('y', colors=colors[0])
ax2.tick_params('y', colors=colors[1])
plt.tight_layout()
plt.show()
下面是一个简单的方法来绘制两个直方图,当数据大小不同时,它们的柱状图并排在同一个图上:
def plotHistogram(p, o):
"""
p and o are iterables with the values you want to
plot the histogram of
"""
plt.hist([p, o], color=['g','r'], alpha=0.8, bins=50)
plt.show()
以防你有pandas (import pandas as pd)或者可以使用它:
test = pd.DataFrame([[random.gauss(3,1) for _ in range(400)],
[random.gauss(4,2) for _ in range(400)]])
plt.hist(test.values.T)
plt.show()
还有一个选项和华金的答案很相似:
import random
from matplotlib import pyplot
#random data
x = [random.gauss(3,1) for _ in range(400)]
y = [random.gauss(4,2) for _ in range(400)]
#plot both histograms(range from -10 to 10), bins set to 100
pyplot.hist([x,y], bins= 100, range=[-10,10], alpha=0.5, label=['x', 'y'])
#plot legend
pyplot.legend(loc='upper right')
#show it
pyplot.show()
给出如下输出:
绘制两个重叠的直方图(或更多)会导致一个相当混乱的图。我发现使用阶梯直方图(又名空心直方图)可以大大提高可读性。唯一的缺点是在matplotlib中,步骤直方图的默认图例没有正确格式化,所以可以像下面的例子那样编辑它:
import numpy as np # v 1.19.2
import matplotlib.pyplot as plt # v 3.3.2
from matplotlib.lines import Line2D
rng = np.random.default_rng(seed=123)
# Create two normally distributed random variables of different sizes
# and with different shapes
data1 = rng.normal(loc=30, scale=10, size=500)
data2 = rng.normal(loc=50, scale=10, size=1000)
# Create figure with 'step' type of histogram to improve plot readability
fig, ax = plt.subplots(figsize=(9,5))
ax.hist([data1, data2], bins=15, histtype='step', linewidth=2,
alpha=0.7, label=['data1','data2'])
# Edit legend to get lines as legend keys instead of the default polygons
# and sort the legend entries in alphanumeric order
handles, labels = ax.get_legend_handles_labels()
leg_entries = {}
for h, label in zip(handles, labels):
leg_entries[label] = Line2D([0], [0], color=h.get_facecolor()[:-1],
alpha=h.get_alpha(), lw=h.get_linewidth())
labels_sorted, lines = zip(*sorted(leg_entries.items()))
ax.legend(lines, labels_sorted, frameon=False)
# Remove spines
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
# Add annotations
plt.ylabel('Frequency', labelpad=15)
plt.title('Matplotlib step histogram', fontsize=14, pad=20)
plt.show()
如您所见,结果看起来非常干净。这在重叠两个以上的直方图时尤其有用。根据变量的分布方式,这最多可以适用于5个重叠的分布。除此之外,还需要使用另一种类型的情节,比如这里介绍的其中一种。