我用一个文件中的数据创建了一个直方图,没有问题。现在我想在同一直方图中叠加来自另一个文件的数据,所以我这样做

n,bins,patchs = ax.hist(mydata1,100)
n,bins,patchs = ax.hist(mydata2,100)

但问题是,对于每个区间,只有最高值的条出现,而另一个条被隐藏。我想知道如何用不同的颜色同时绘制两个直方图。


当前回答

作为Gustavo Bezerra回答的补充:

如果你想要每个直方图被归一化(对mpl<=2.1进行归一化,对mpl>=3.1进行密度归一化),你不能只使用归一化/密度=True,你需要为每个值设置权重:

import numpy as np
import matplotlib.pyplot as plt

x = np.random.normal(1, 2, 5000)
y = np.random.normal(-1, 3, 2000)
x_w = np.empty(x.shape)
x_w.fill(1/x.shape[0])
y_w = np.empty(y.shape)
y_w.fill(1/y.shape[0])
bins = np.linspace(-10, 10, 30)

plt.hist([x, y], bins, weights=[x_w, y_w], label=['x', 'y'])
plt.legend(loc='upper right')
plt.show()

作为比较,完全相同的x和y向量,默认权重和密度=True:

其他回答

以防你有pandas (import pandas as pd)或者可以使用它:

test = pd.DataFrame([[random.gauss(3,1) for _ in range(400)], 
                     [random.gauss(4,2) for _ in range(400)]])
plt.hist(test.values.T)
plt.show()

作为Gustavo Bezerra回答的补充:

如果你想要每个直方图被归一化(对mpl<=2.1进行归一化,对mpl>=3.1进行密度归一化),你不能只使用归一化/密度=True,你需要为每个值设置权重:

import numpy as np
import matplotlib.pyplot as plt

x = np.random.normal(1, 2, 5000)
y = np.random.normal(-1, 3, 2000)
x_w = np.empty(x.shape)
x_w.fill(1/x.shape[0])
y_w = np.empty(y.shape)
y_w.fill(1/y.shape[0])
bins = np.linspace(-10, 10, 30)

plt.hist([x, y], bins, weights=[x_w, y_w], label=['x', 'y'])
plt.legend(loc='upper right')
plt.show()

作为比较,完全相同的x和y向量,默认权重和密度=True:

接受的答案给出了带有重叠条的直方图的代码,但如果你想要每个条并排(就像我做的那样),请尝试下面的变化:

import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn-deep')

x = np.random.normal(1, 2, 5000)
y = np.random.normal(-1, 3, 2000)
bins = np.linspace(-10, 10, 30)

plt.hist([x, y], bins, label=['x', 'y'])
plt.legend(loc='upper right')
plt.show()

参考:http://matplotlib.org/examples/statistics/histogram_demo_multihist.html

EDIT[2018/03/16]:更新到允许绘制不同大小的数组,正如@stochastic_zeitgeist所建议的那样

这里有一个工作示例:

import random
import numpy
from matplotlib import pyplot

x = [random.gauss(3,1) for _ in range(400)]
y = [random.gauss(4,2) for _ in range(400)]

bins = numpy.linspace(-10, 10, 100)

pyplot.hist(x, bins, alpha=0.5, label='x')
pyplot.hist(y, bins, alpha=0.5, label='y')
pyplot.legend(loc='upper right')
pyplot.show()

当您想要从二维numpy数组绘制直方图时,有一个警告。你需要交换两个坐标轴。

import numpy as np
import matplotlib.pyplot as plt

data = np.random.normal(size=(2, 300))
# swapped_data.shape == (300, 2)
swapped_data = np.swapaxes(x, axis1=0, axis2=1)
plt.hist(swapped_data, bins=30, label=['x', 'y'])
plt.legend()
plt.show()