我用一个文件中的数据创建了一个直方图,没有问题。现在我想在同一直方图中叠加来自另一个文件的数据,所以我这样做
n,bins,patchs = ax.hist(mydata1,100)
n,bins,patchs = ax.hist(mydata2,100)
但问题是,对于每个区间,只有最高值的条出现,而另一个条被隐藏。我想知道如何用不同的颜色同时绘制两个直方图。
我用一个文件中的数据创建了一个直方图,没有问题。现在我想在同一直方图中叠加来自另一个文件的数据,所以我这样做
n,bins,patchs = ax.hist(mydata1,100)
n,bins,patchs = ax.hist(mydata2,100)
但问题是,对于每个区间,只有最高值的条出现,而另一个条被隐藏。我想知道如何用不同的颜色同时绘制两个直方图。
当前回答
当您想要从二维numpy数组绘制直方图时,有一个警告。你需要交换两个坐标轴。
import numpy as np
import matplotlib.pyplot as plt
data = np.random.normal(size=(2, 300))
# swapped_data.shape == (300, 2)
swapped_data = np.swapaxes(x, axis1=0, axis2=1)
plt.hist(swapped_data, bins=30, label=['x', 'y'])
plt.legend()
plt.show()
其他回答
以防你有pandas (import pandas as pd)或者可以使用它:
test = pd.DataFrame([[random.gauss(3,1) for _ in range(400)],
[random.gauss(4,2) for _ in range(400)]])
plt.hist(test.values.T)
plt.show()
听起来你可能只需要一个柱状图:
http://matplotlib.sourceforge.net/examples/pylab_examples/bar_stacked.html http://matplotlib.sourceforge.net/examples/pylab_examples/barchart_demo.html
或者,您可以使用子情节。
受到Solomon的答案的启发,但要坚持这个与直方图有关的问题,一个干净的解决方案是:
sns.distplot(bar)
sns.distplot(foo)
plt.show()
确保先绘制较高的直方图,否则需要设置plot .ylim(0,0.45),这样较高的直方图就不会被切掉。
当您想要从二维numpy数组绘制直方图时,有一个警告。你需要交换两个坐标轴。
import numpy as np
import matplotlib.pyplot as plt
data = np.random.normal(size=(2, 300))
# swapped_data.shape == (300, 2)
swapped_data = np.swapaxes(x, axis1=0, axis2=1)
plt.hist(swapped_data, bins=30, label=['x', 'y'])
plt.legend()
plt.show()
你应该使用hist返回值中的bin:
import numpy as np
import matplotlib.pyplot as plt
foo = np.random.normal(loc=1, size=100) # a normal distribution
bar = np.random.normal(loc=-1, size=10000) # a normal distribution
_, bins, _ = plt.hist(foo, bins=50, range=[-6, 6], normed=True)
_ = plt.hist(bar, bins=bins, alpha=0.5, normed=True)