我想从Pandas DataFrame中获得列标题的列表。DataFrame将来自用户输入,所以我不知道有多少列或它们将被称为什么。

例如,如果我有一个这样的数据帧:

>>> my_dataframe
    y  gdp  cap
0   1    2    5
1   2    3    9
2   8    7    2
3   3    4    7
4   6    7    7
5   4    8    3
6   8    2    8
7   9    9   10
8   6    6    4
9  10   10    7

我会得到一个这样的列表:

>>> header_list
['y', 'gdp', 'cap']

当前回答

扩展可迭代解包(Python 3.5+): [*df]和Friends

Python 3.5引入了解包泛化(PEP 448)。因此,下面的操作都是可能的。

df = pd.DataFrame('x', columns=['A', 'B', 'C'], index=range(5))
df

   A  B  C
0  x  x  x
1  x  x  x
2  x  x  x
3  x  x  x
4  x  x  x

如果你想要一个列表....

[*df]
# ['A', 'B', 'C']

或者,如果你想要一组,

{*df}
# {'A', 'B', 'C'}

如果你想要一个元组,

*df,  # Please note the trailing comma
# ('A', 'B', 'C')

或者,如果你想把结果存储在某个地方,

*cols, = df  # A wild comma appears, again
cols
# ['A', 'B', 'C']

... 如果你是那种把咖啡转换成打字声音的人,好吧,这将更有效地消耗你的咖啡;)

附注:如果性能很重要,你会想要抛弃 上述解决方案有利于 .tolist df.columns.to_numpy () () # [' a ', ' b ', ' c '] 这与Ed Chum的答案相似,但更新了 V0.24,其中.to_numpy()优先于.values的使用。看到 这个答案(由我)为更多的信息。

目视检查

因为我在其他回答中已经看到过这个问题,所以可以使用可迭代解包(不需要显式循环)。

print(*df)
A B C

print(*df, sep='\n')
A
B
C

其他方法的批判

对于可以在单行中完成的操作,不要使用显式for循环(列表推导式是可以的)。

接下来,使用sorted(df)不会保留列的原始顺序。为此,应该使用list(df)。

其次,list(df.columns)和list(df.columns.values)是不好的建议(就当前版本v0.24而言)。Index(从df.columns返回)和NumPy数组(从df.columns.values返回)都定义了.tolist()方法,该方法更快,更习惯。

最后,对于Python 3.4或更早版本,在扩展解包不可用的情况下,应该只使用列表(list(df))作为上述方法的简洁替代。

其他回答

%%timeit
final_df.columns.values.tolist()
948 ns ± 19.2 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
%%timeit
list(final_df.columns)
14.2 µs ± 79.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%%timeit
list(final_df.columns.values)
1.88 µs ± 11.7 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
%%timeit
final_df.columns.tolist()
12.3 µs ± 27.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%%timeit
list(final_df.head(1).columns)
163 µs ± 20.6 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

我觉得这个问题值得再解释一下。

正如fixxer所指出的,答案取决于您在项目中使用的Pandas版本。这可以通过pd得到。__version__命令。

如果你出于某种原因像我一样(在Debian 8 (Jessie)上我使用0.14.1)使用比0.16.0更老的Pandas版本,那么你需要使用:

df.keys().tolist()因为没有任何df.keys。Columns方法尚未实现。

这个keys方法的优点是,它甚至可以在更新版本的Pandas中工作,因此更加通用。

为了快速,简洁,直观的检查,试试这个:

for col in df.columns:
    print col

如果DataFrame碰巧有一个Index或MultiIndex,你也想把它们包括在列名中:

names = list(filter(None, df.index.names + df.columns.values.tolist()))

它避免调用reset_index(),因为对于这样一个简单的操作,reset_index()会造成不必要的性能损失。

我经常遇到这种情况,因为我从数据库中穿梭数据,其中dataframe索引映射到一个主键/唯一键,但对我来说实际上只是另一个“列”。对于熊猫来说,有一个内置的方法可能是有意义的(完全有可能我错过了它)。

n = []
for i in my_dataframe.columns:
    n.append(i)
print n