我在Python中调用一个函数,我知道这个函数可能会暂停,并迫使我重新启动脚本。

我怎么调用这个函数或者我把它包装在什么里面,这样如果它花费超过5秒脚本就会取消它并做其他事情?


当前回答

如果工作没有完成,我打算杀死进程,使用线程和进程来实现这一点。

from concurrent.futures import ThreadPoolExecutor

from time import sleep
import multiprocessing


# test case 1
def worker_1(a,b,c):
    for _ in range(2):
        print('very time consuming sleep')
        sleep(1)

    return a+b+c

# test case 2
def worker_2(in_name):
    for _ in range(10):
        print('very time consuming sleep')
        sleep(1)

    return 'hello '+in_name

作为上下文管理器的实际类

class FuncTimer():
    def __init__(self,fn,args,runtime):
        self.fn = fn
        self.args = args
        self.queue = multiprocessing.Queue()
        self.runtime = runtime
        self.process = multiprocessing.Process(target=self.thread_caller)

    def thread_caller(self):
        with ThreadPoolExecutor() as executor:
            future = executor.submit(self.fn, *self.args)
            self.queue.put(future.result())

    def  __enter__(self):
        return self

    def start_run(self):
        self.process.start()
        self.process.join(timeout=self.runtime)
        if self.process.exitcode is None:
            self.process.kill()
        if self.process.exitcode is None:
            out_res = None
            print('killed premature')
        else:
            out_res = self.queue.get()
        return out_res


    def __exit__(self, exc_type, exc_value, exc_traceback):
        self.process.kill()

如何使用

print('testing case 1') 
with FuncTimer(fn=worker_1,args=(1,2,3),runtime = 5) as fp: 
    res = fp.start_run()
    print(res)

print('testing case 2')
with FuncTimer(fn=worker_2,args=('ram',),runtime = 5) as fp: 
    res = fp.start_run()
    print(res)

其他回答

我在搜索单元测试的超时调用时遇到了这个线程。我没有在答案或第三方包中找到任何简单的东西,所以我写了下面的装饰器,你可以直接放入代码中:

import multiprocessing.pool
import functools

def timeout(max_timeout):
    """Timeout decorator, parameter in seconds."""
    def timeout_decorator(item):
        """Wrap the original function."""
        @functools.wraps(item)
        def func_wrapper(*args, **kwargs):
            """Closure for function."""
            pool = multiprocessing.pool.ThreadPool(processes=1)
            async_result = pool.apply_async(item, args, kwargs)
            # raises a TimeoutError if execution exceeds max_timeout
            return async_result.get(max_timeout)
        return func_wrapper
    return timeout_decorator

然后就像这样简单地超时测试或任何你喜欢的函数:

@timeout(5.0)  # if execution takes longer than 5 seconds, raise a TimeoutError
def test_base_regression(self):
    ...

如果工作没有完成,我打算杀死进程,使用线程和进程来实现这一点。

from concurrent.futures import ThreadPoolExecutor

from time import sleep
import multiprocessing


# test case 1
def worker_1(a,b,c):
    for _ in range(2):
        print('very time consuming sleep')
        sleep(1)

    return a+b+c

# test case 2
def worker_2(in_name):
    for _ in range(10):
        print('very time consuming sleep')
        sleep(1)

    return 'hello '+in_name

作为上下文管理器的实际类

class FuncTimer():
    def __init__(self,fn,args,runtime):
        self.fn = fn
        self.args = args
        self.queue = multiprocessing.Queue()
        self.runtime = runtime
        self.process = multiprocessing.Process(target=self.thread_caller)

    def thread_caller(self):
        with ThreadPoolExecutor() as executor:
            future = executor.submit(self.fn, *self.args)
            self.queue.put(future.result())

    def  __enter__(self):
        return self

    def start_run(self):
        self.process.start()
        self.process.join(timeout=self.runtime)
        if self.process.exitcode is None:
            self.process.kill()
        if self.process.exitcode is None:
            out_res = None
            print('killed premature')
        else:
            out_res = self.queue.get()
        return out_res


    def __exit__(self, exc_type, exc_value, exc_traceback):
        self.process.kill()

如何使用

print('testing case 1') 
with FuncTimer(fn=worker_1,args=(1,2,3),runtime = 5) as fp: 
    res = fp.start_run()
    print(res)

print('testing case 2')
with FuncTimer(fn=worker_2,args=('ram',),runtime = 5) as fp: 
    res = fp.start_run()
    print(res)

asyncio的另一个解决方案:

如果你想取消后台任务,而不仅仅是在运行的主代码上超时,那么你需要一个来自主线程的显式通信,要求任务的代码取消,比如threading.Event()

import asyncio
import functools
import multiprocessing
from concurrent.futures.thread import ThreadPoolExecutor


class SingletonTimeOut:
    pool = None

    @classmethod
    def run(cls, to_run: functools.partial, timeout: float):
        pool = cls.get_pool()
        loop = cls.get_loop()
        try:
            task = loop.run_in_executor(pool, to_run)
            return loop.run_until_complete(asyncio.wait_for(task, timeout=timeout))
        except asyncio.TimeoutError as e:
            error_type = type(e).__name__ #TODO
            raise e

    @classmethod
    def get_pool(cls):
        if cls.pool is None:
            cls.pool = ThreadPoolExecutor(multiprocessing.cpu_count())
        return cls.pool

    @classmethod
    def get_loop(cls):
        try:
            return asyncio.get_event_loop()
        except RuntimeError:
            asyncio.set_event_loop(asyncio.new_event_loop())
            # print("NEW LOOP" + str(threading.current_thread().ident))
            return asyncio.get_event_loop()

# ---------------

TIME_OUT = float('0.2')  # seconds

def toto(input_items,nb_predictions):
    return 1

to_run = functools.partial(toto,
                           input_items=1,
                           nb_predictions="a")

results = SingletonTimeOut.run(to_run, TIME_OUT)

#!/usr/bin/python2
import sys, subprocess, threading
proc = subprocess.Popen(sys.argv[2:])
timer = threading.Timer(float(sys.argv[1]), proc.terminate)
timer.start()
proc.wait()
timer.cancel()
exit(proc.returncode)

以防对任何人都有帮助,在@piro的回答的基础上,我做了一个函数装饰器:

import time
import signal
from functools import wraps


def timeout(timeout_secs: int):
    def wrapper(func):
        @wraps(func)
        def time_limited(*args, **kwargs):
            # Register an handler for the timeout
            def handler(signum, frame):
                raise Exception(f"Timeout for function '{func.__name__}'")

            # Register the signal function handler
            signal.signal(signal.SIGALRM, handler)

            # Define a timeout for your function
            signal.alarm(timeout_secs)

            result = None
            try:
                result = func(*args, **kwargs)
            except Exception as exc:
                raise exc
            finally:
                # disable the signal alarm
                signal.alarm(0)

            return result

        return time_limited

    return wrapper

在一个有20秒超时的函数上使用包装器看起来像这样:

    @timeout(20)
    def my_slow_or_never_ending_function(name):
        while True:
            time.sleep(1)
            print(f"Yet another second passed {name}...")

    try:
        results = my_slow_or_never_ending_function("Yooo!")
    except Exception as e:
        print(f"ERROR: {e}")