我在Python中调用一个函数,我知道这个函数可能会暂停,并迫使我重新启动脚本。

我怎么调用这个函数或者我把它包装在什么里面,这样如果它花费超过5秒脚本就会取消它并做其他事情?


当前回答

如果工作没有完成,我打算杀死进程,使用线程和进程来实现这一点。

from concurrent.futures import ThreadPoolExecutor

from time import sleep
import multiprocessing


# test case 1
def worker_1(a,b,c):
    for _ in range(2):
        print('very time consuming sleep')
        sleep(1)

    return a+b+c

# test case 2
def worker_2(in_name):
    for _ in range(10):
        print('very time consuming sleep')
        sleep(1)

    return 'hello '+in_name

作为上下文管理器的实际类

class FuncTimer():
    def __init__(self,fn,args,runtime):
        self.fn = fn
        self.args = args
        self.queue = multiprocessing.Queue()
        self.runtime = runtime
        self.process = multiprocessing.Process(target=self.thread_caller)

    def thread_caller(self):
        with ThreadPoolExecutor() as executor:
            future = executor.submit(self.fn, *self.args)
            self.queue.put(future.result())

    def  __enter__(self):
        return self

    def start_run(self):
        self.process.start()
        self.process.join(timeout=self.runtime)
        if self.process.exitcode is None:
            self.process.kill()
        if self.process.exitcode is None:
            out_res = None
            print('killed premature')
        else:
            out_res = self.queue.get()
        return out_res


    def __exit__(self, exc_type, exc_value, exc_traceback):
        self.process.kill()

如何使用

print('testing case 1') 
with FuncTimer(fn=worker_1,args=(1,2,3),runtime = 5) as fp: 
    res = fp.start_run()
    print(res)

print('testing case 2')
with FuncTimer(fn=worker_2,args=('ram',),runtime = 5) as fp: 
    res = fp.start_run()
    print(res)

其他回答

你可以使用多处理。过程来做到这一点。

Code

import multiprocessing
import time

# bar
def bar():
    for i in range(100):
        print "Tick"
        time.sleep(1)

if __name__ == '__main__':
    # Start bar as a process
    p = multiprocessing.Process(target=bar)
    p.start()

    # Wait for 10 seconds or until process finishes
    p.join(10)

    # If thread is still active
    if p.is_alive():
        print "running... let's kill it..."

        # Terminate - may not work if process is stuck for good
        p.terminate()
        # OR Kill - will work for sure, no chance for process to finish nicely however
        # p.kill()

        p.join()

超时装饰器不能在Windows系统上工作,因为Windows不太支持信号。

如果你在windows系统中使用超时装饰器,你会得到以下结果

AttributeError: module 'signal' has no attribute 'SIGALRM'

有些人建议使用use_signals=False,但对我没用。

作者@bitranox创建了以下包:

pip install https://github.com/bitranox/wrapt-timeout-decorator/archive/master.zip

代码示例:

import time
from wrapt_timeout_decorator import *

@timeout(5)
def mytest(message):
    print(message)
    for i in range(1,10):
        time.sleep(1)
        print('{} seconds have passed'.format(i))

def main():
    mytest('starting')


if __name__ == '__main__':
    main()

给出以下例外:

TimeoutError: Function mytest timed out after 5 seconds

下面是一个简单的例子,运行一个带有timeout的方法,并在成功时检索它的值。

import multiprocessing
import time

ret = {"foo": False}


def worker(queue):
    """worker function"""

    ret = queue.get()

    time.sleep(1)

    ret["foo"] = True
    queue.put(ret)


if __name__ == "__main__":
    queue = multiprocessing.Queue()
    queue.put(ret)

    p = multiprocessing.Process(target=worker, args=(queue,))
    p.start()
    p.join(timeout=10)

    if p.exitcode is None:
        print("The worker timed out.")
    else:
        print(f"The worker completed and returned: {queue.get()}")

如果工作没有完成,我打算杀死进程,使用线程和进程来实现这一点。

from concurrent.futures import ThreadPoolExecutor

from time import sleep
import multiprocessing


# test case 1
def worker_1(a,b,c):
    for _ in range(2):
        print('very time consuming sleep')
        sleep(1)

    return a+b+c

# test case 2
def worker_2(in_name):
    for _ in range(10):
        print('very time consuming sleep')
        sleep(1)

    return 'hello '+in_name

作为上下文管理器的实际类

class FuncTimer():
    def __init__(self,fn,args,runtime):
        self.fn = fn
        self.args = args
        self.queue = multiprocessing.Queue()
        self.runtime = runtime
        self.process = multiprocessing.Process(target=self.thread_caller)

    def thread_caller(self):
        with ThreadPoolExecutor() as executor:
            future = executor.submit(self.fn, *self.args)
            self.queue.put(future.result())

    def  __enter__(self):
        return self

    def start_run(self):
        self.process.start()
        self.process.join(timeout=self.runtime)
        if self.process.exitcode is None:
            self.process.kill()
        if self.process.exitcode is None:
            out_res = None
            print('killed premature')
        else:
            out_res = self.queue.get()
        return out_res


    def __exit__(self, exc_type, exc_value, exc_traceback):
        self.process.kill()

如何使用

print('testing case 1') 
with FuncTimer(fn=worker_1,args=(1,2,3),runtime = 5) as fp: 
    res = fp.start_run()
    print(res)

print('testing case 2')
with FuncTimer(fn=worker_2,args=('ram',),runtime = 5) as fp: 
    res = fp.start_run()
    print(res)

下面是对给定的基于线程的解决方案的轻微改进。

下面的代码支持异常:

def runFunctionCatchExceptions(func, *args, **kwargs):
    try:
        result = func(*args, **kwargs)
    except Exception, message:
        return ["exception", message]

    return ["RESULT", result]


def runFunctionWithTimeout(func, args=(), kwargs={}, timeout_duration=10, default=None):
    import threading
    class InterruptableThread(threading.Thread):
        def __init__(self):
            threading.Thread.__init__(self)
            self.result = default
        def run(self):
            self.result = runFunctionCatchExceptions(func, *args, **kwargs)
    it = InterruptableThread()
    it.start()
    it.join(timeout_duration)
    if it.isAlive():
        return default

    if it.result[0] == "exception":
        raise it.result[1]

    return it.result[1]

用5秒超时调用它:

result = timeout(remote_calculate, (myarg,), timeout_duration=5)