我在Python中调用一个函数,我知道这个函数可能会暂停,并迫使我重新启动脚本。
我怎么调用这个函数或者我把它包装在什么里面,这样如果它花费超过5秒脚本就会取消它并做其他事情?
我在Python中调用一个函数,我知道这个函数可能会暂停,并迫使我重新启动脚本。
我怎么调用这个函数或者我把它包装在什么里面,这样如果它花费超过5秒脚本就会取消它并做其他事情?
当前回答
下面是一个简单的例子,运行一个带有timeout的方法,并在成功时检索它的值。
import multiprocessing
import time
ret = {"foo": False}
def worker(queue):
"""worker function"""
ret = queue.get()
time.sleep(1)
ret["foo"] = True
queue.put(ret)
if __name__ == "__main__":
queue = multiprocessing.Queue()
queue.put(ret)
p = multiprocessing.Process(target=worker, args=(queue,))
p.start()
p.join(timeout=10)
if p.exitcode is None:
print("The worker timed out.")
else:
print(f"The worker completed and returned: {queue.get()}")
其他回答
我怎么调用函数或者我怎么包装它,如果它超过5秒脚本取消它?
我发布了一个要点,用装饰器和threading.Timer解决了这个问题。下面是它的分类。
导入和设置兼容性
它是用Python 2和3测试的。它也应该在Unix/Linux和Windows下工作。
首先是进口。这些尝试保持代码的一致性,而不管Python版本:
from __future__ import print_function
import sys
import threading
from time import sleep
try:
import thread
except ImportError:
import _thread as thread
使用版本独立代码:
try:
range, _print = xrange, print
def print(*args, **kwargs):
flush = kwargs.pop('flush', False)
_print(*args, **kwargs)
if flush:
kwargs.get('file', sys.stdout).flush()
except NameError:
pass
现在我们已经从标准库导入了我们的功能。
exit_after装饰
接下来,我们需要一个函数来终止子线程的main():
def quit_function(fn_name):
# print to stderr, unbuffered in Python 2.
print('{0} took too long'.format(fn_name), file=sys.stderr)
sys.stderr.flush() # Python 3 stderr is likely buffered.
thread.interrupt_main() # raises KeyboardInterrupt
这是decorator本身:
def exit_after(s):
'''
use as decorator to exit process if
function takes longer than s seconds
'''
def outer(fn):
def inner(*args, **kwargs):
timer = threading.Timer(s, quit_function, args=[fn.__name__])
timer.start()
try:
result = fn(*args, **kwargs)
finally:
timer.cancel()
return result
return inner
return outer
使用
下面这个用法直接回答了你关于5秒后退出的问题!:
@exit_after(5)
def countdown(n):
print('countdown started', flush=True)
for i in range(n, -1, -1):
print(i, end=', ', flush=True)
sleep(1)
print('countdown finished')
演示:
>>> countdown(3)
countdown started
3, 2, 1, 0, countdown finished
>>> countdown(10)
countdown started
10, 9, 8, 7, 6, countdown took too long
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 11, in inner
File "<stdin>", line 6, in countdown
KeyboardInterrupt
第二个函数调用将不会结束,相反,进程应该退出并返回一个跟踪!
KeyboardInterrupt并不总是停止一个睡眠线程
注意,在Windows上的Python 2中,睡眠并不总是被键盘中断中断,例如:
@exit_after(1)
def sleep10():
sleep(10)
print('slept 10 seconds')
>>> sleep10()
sleep10 took too long # Note that it hangs here about 9 more seconds
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 11, in inner
File "<stdin>", line 3, in sleep10
KeyboardInterrupt
它也不可能中断扩展中运行的代码,除非它显式地检查PyErr_CheckSignals(),参见忽略Cython, Python和KeyboardInterrupt
在任何情况下,我都会避免让线程休眠超过一秒钟——这在处理器时间上是一eon。
我怎么调用这个函数或者我把它包装在什么里面,这样如果它花费超过5秒脚本就会取消它并做其他事情?
要捕获它并做其他事情,你可以捕获KeyboardInterrupt。
>>> try:
... countdown(10)
... except KeyboardInterrupt:
... print('do something else')
...
countdown started
10, 9, 8, 7, 6, countdown took too long
do something else
如果您在UNIX上运行,则可以使用信号包:
In [1]: import signal
# Register an handler for the timeout
In [2]: def handler(signum, frame):
...: print("Forever is over!")
...: raise Exception("end of time")
...:
# This function *may* run for an indetermined time...
In [3]: def loop_forever():
...: import time
...: while 1:
...: print("sec")
...: time.sleep(1)
...:
...:
# Register the signal function handler
In [4]: signal.signal(signal.SIGALRM, handler)
Out[4]: 0
# Define a timeout for your function
In [5]: signal.alarm(10)
Out[5]: 0
In [6]: try:
...: loop_forever()
...: except Exception, exc:
...: print(exc)
....:
sec
sec
sec
sec
sec
sec
sec
sec
Forever is over!
end of time
# Cancel the timer if the function returned before timeout
# (ok, mine won't but yours maybe will :)
In [7]: signal.alarm(0)
Out[7]: 0
在调用signal.alarm(10)后10秒,调用处理程序。这会引发一个异常,您可以从常规Python代码中拦截该异常。
这个模块不能很好地使用线程(但是,谁能呢?)
注意,由于我们在超时发生时引发异常,它可能最终在函数内部被捕获并忽略,例如这样一个函数:
def loop_forever():
while 1:
print('sec')
try:
time.sleep(10)
except:
continue
asyncio的另一个解决方案:
如果你想取消后台任务,而不仅仅是在运行的主代码上超时,那么你需要一个来自主线程的显式通信,要求任务的代码取消,比如threading.Event()
import asyncio
import functools
import multiprocessing
from concurrent.futures.thread import ThreadPoolExecutor
class SingletonTimeOut:
pool = None
@classmethod
def run(cls, to_run: functools.partial, timeout: float):
pool = cls.get_pool()
loop = cls.get_loop()
try:
task = loop.run_in_executor(pool, to_run)
return loop.run_until_complete(asyncio.wait_for(task, timeout=timeout))
except asyncio.TimeoutError as e:
error_type = type(e).__name__ #TODO
raise e
@classmethod
def get_pool(cls):
if cls.pool is None:
cls.pool = ThreadPoolExecutor(multiprocessing.cpu_count())
return cls.pool
@classmethod
def get_loop(cls):
try:
return asyncio.get_event_loop()
except RuntimeError:
asyncio.set_event_loop(asyncio.new_event_loop())
# print("NEW LOOP" + str(threading.current_thread().ident))
return asyncio.get_event_loop()
# ---------------
TIME_OUT = float('0.2') # seconds
def toto(input_items,nb_predictions):
return 1
to_run = functools.partial(toto,
input_items=1,
nb_predictions="a")
results = SingletonTimeOut.run(to_run, TIME_OUT)
以防对任何人都有帮助,在@piro的回答的基础上,我做了一个函数装饰器:
import time
import signal
from functools import wraps
def timeout(timeout_secs: int):
def wrapper(func):
@wraps(func)
def time_limited(*args, **kwargs):
# Register an handler for the timeout
def handler(signum, frame):
raise Exception(f"Timeout for function '{func.__name__}'")
# Register the signal function handler
signal.signal(signal.SIGALRM, handler)
# Define a timeout for your function
signal.alarm(timeout_secs)
result = None
try:
result = func(*args, **kwargs)
except Exception as exc:
raise exc
finally:
# disable the signal alarm
signal.alarm(0)
return result
return time_limited
return wrapper
在一个有20秒超时的函数上使用包装器看起来像这样:
@timeout(20)
def my_slow_or_never_ending_function(name):
while True:
time.sleep(1)
print(f"Yet another second passed {name}...")
try:
results = my_slow_or_never_ending_function("Yooo!")
except Exception as e:
print(f"ERROR: {e}")
你可以使用多处理。过程来做到这一点。
Code
import multiprocessing
import time
# bar
def bar():
for i in range(100):
print "Tick"
time.sleep(1)
if __name__ == '__main__':
# Start bar as a process
p = multiprocessing.Process(target=bar)
p.start()
# Wait for 10 seconds or until process finishes
p.join(10)
# If thread is still active
if p.is_alive():
print "running... let's kill it..."
# Terminate - may not work if process is stuck for good
p.terminate()
# OR Kill - will work for sure, no chance for process to finish nicely however
# p.kill()
p.join()