我在Python中调用一个函数,我知道这个函数可能会暂停,并迫使我重新启动脚本。
我怎么调用这个函数或者我把它包装在什么里面,这样如果它花费超过5秒脚本就会取消它并做其他事情?
我在Python中调用一个函数,我知道这个函数可能会暂停,并迫使我重新启动脚本。
我怎么调用这个函数或者我把它包装在什么里面,这样如果它花费超过5秒脚本就会取消它并做其他事情?
当前回答
在pypi上找到的stopit包似乎可以很好地处理超时。
我喜欢@stopit。Threading_timeoutable装饰器,它向被装饰的函数添加了一个超时参数,该参数执行您所期望的操作,它将停止该函数。
在pypi上查看:https://pypi.python.org/pypi/stopit
其他回答
如果您在UNIX上运行,则可以使用信号包:
In [1]: import signal
# Register an handler for the timeout
In [2]: def handler(signum, frame):
...: print("Forever is over!")
...: raise Exception("end of time")
...:
# This function *may* run for an indetermined time...
In [3]: def loop_forever():
...: import time
...: while 1:
...: print("sec")
...: time.sleep(1)
...:
...:
# Register the signal function handler
In [4]: signal.signal(signal.SIGALRM, handler)
Out[4]: 0
# Define a timeout for your function
In [5]: signal.alarm(10)
Out[5]: 0
In [6]: try:
...: loop_forever()
...: except Exception, exc:
...: print(exc)
....:
sec
sec
sec
sec
sec
sec
sec
sec
Forever is over!
end of time
# Cancel the timer if the function returned before timeout
# (ok, mine won't but yours maybe will :)
In [7]: signal.alarm(0)
Out[7]: 0
在调用signal.alarm(10)后10秒,调用处理程序。这会引发一个异常,您可以从常规Python代码中拦截该异常。
这个模块不能很好地使用线程(但是,谁能呢?)
注意,由于我们在超时发生时引发异常,它可能最终在函数内部被捕获并忽略,例如这样一个函数:
def loop_forever():
while 1:
print('sec')
try:
time.sleep(10)
except:
continue
下面是一个POSIX版本,它结合了前面的许多答案来提供以下特性:
子进程阻塞执行。 timeout函数在类成员函数上的使用。 严格要求终止时间。
下面是代码和一些测试用例:
import threading
import signal
import os
import time
class TerminateExecution(Exception):
"""
Exception to indicate that execution has exceeded the preset running time.
"""
def quit_function(pid):
# Killing all subprocesses
os.setpgrp()
os.killpg(0, signal.SIGTERM)
# Killing the main thread
os.kill(pid, signal.SIGTERM)
def handle_term(signum, frame):
raise TerminateExecution()
def invoke_with_timeout(timeout, fn, *args, **kwargs):
# Setting a sigterm handler and initiating a timer
old_handler = signal.signal(signal.SIGTERM, handle_term)
timer = threading.Timer(timeout, quit_function, args=[os.getpid()])
terminate = False
# Executing the function
timer.start()
try:
result = fn(*args, **kwargs)
except TerminateExecution:
terminate = True
finally:
# Restoring original handler and cancel timer
signal.signal(signal.SIGTERM, old_handler)
timer.cancel()
if terminate:
raise BaseException("xxx")
return result
### Test cases
def countdown(n):
print('countdown started', flush=True)
for i in range(n, -1, -1):
print(i, end=', ', flush=True)
time.sleep(1)
print('countdown finished')
return 1337
def really_long_function():
time.sleep(10)
def really_long_function2():
os.system("sleep 787")
# Checking that we can run a function as expected.
assert invoke_with_timeout(3, countdown, 1) == 1337
# Testing various scenarios
t1 = time.time()
try:
print(invoke_with_timeout(1, countdown, 3))
assert(False)
except BaseException:
assert(time.time() - t1 < 1.1)
print("All good", time.time() - t1)
t1 = time.time()
try:
print(invoke_with_timeout(1, really_long_function2))
assert(False)
except BaseException:
assert(time.time() - t1 < 1.1)
print("All good", time.time() - t1)
t1 = time.time()
try:
print(invoke_with_timeout(1, really_long_function))
assert(False)
except BaseException:
assert(time.time() - t1 < 1.1)
print("All good", time.time() - t1)
# Checking that classes are referenced and not
# copied (as would be the case with multiprocessing)
class X:
def __init__(self):
self.value = 0
def set(self, v):
self.value = v
x = X()
invoke_with_timeout(2, x.set, 9)
assert x.value == 9
下面是对给定的基于线程的解决方案的轻微改进。
下面的代码支持异常:
def runFunctionCatchExceptions(func, *args, **kwargs):
try:
result = func(*args, **kwargs)
except Exception, message:
return ["exception", message]
return ["RESULT", result]
def runFunctionWithTimeout(func, args=(), kwargs={}, timeout_duration=10, default=None):
import threading
class InterruptableThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
self.result = default
def run(self):
self.result = runFunctionCatchExceptions(func, *args, **kwargs)
it = InterruptableThread()
it.start()
it.join(timeout_duration)
if it.isAlive():
return default
if it.result[0] == "exception":
raise it.result[1]
return it.result[1]
用5秒超时调用它:
result = timeout(remote_calculate, (myarg,), timeout_duration=5)
突出了
引发TimeoutError使用异常在超时时发出警报-可以很容易地修改 跨平台:Windows和Mac OS X 兼容性:Python 3.6+(我也在Python 2.7上进行了测试,它可以在很小的语法调整下工作)
有关平行地图的完整解释和扩展,请参见https://flipdazed.github.io/blog/quant%20dev/parallel-functions-with-timeouts
最小的例子
>>> @killer_call(timeout=4)
... def bar(x):
... import time
... time.sleep(x)
... return x
>>> bar(10)
Traceback (most recent call last):
...
__main__.TimeoutError: function 'bar' timed out after 4s
正如预期的那样
>>> bar(2)
2
完整代码
import multiprocessing as mp
import multiprocessing.queues as mpq
import functools
import dill
from typing import Tuple, Callable, Dict, Optional, Iterable, List, Any
class TimeoutError(Exception):
def __init__(self, func: Callable, timeout: int):
self.t = timeout
self.fname = func.__name__
def __str__(self):
return f"function '{self.fname}' timed out after {self.t}s"
def _lemmiwinks(func: Callable, args: Tuple, kwargs: Dict[str, Any], q: mp.Queue):
"""lemmiwinks crawls into the unknown"""
q.put(dill.loads(func)(*args, **kwargs))
def killer_call(func: Callable = None, timeout: int = 10) -> Callable:
"""
Single function call with a timeout
Args:
func: the function
timeout: The timeout in seconds
"""
if not isinstance(timeout, int):
raise ValueError(f'timeout needs to be an int. Got: {timeout}')
if func is None:
return functools.partial(killer_call, timeout=timeout)
@functools.wraps(killer_call)
def _inners(*args, **kwargs) -> Any:
q_worker = mp.Queue()
proc = mp.Process(target=_lemmiwinks, args=(dill.dumps(func), args, kwargs, q_worker))
proc.start()
try:
return q_worker.get(timeout=timeout)
except mpq.Empty:
raise TimeoutError(func, timeout)
finally:
try:
proc.terminate()
except:
pass
return _inners
if __name__ == '__main__':
@killer_call(timeout=4)
def bar(x):
import time
time.sleep(x)
return x
print(bar(2))
bar(10)
笔记
由于dill的工作方式,您需要在函数内部导入。
这也意味着如果目标函数中有导入,这些函数可能与doctest不兼容。你将会遇到__import__未找到的问题。
asyncio的另一个解决方案:
如果你想取消后台任务,而不仅仅是在运行的主代码上超时,那么你需要一个来自主线程的显式通信,要求任务的代码取消,比如threading.Event()
import asyncio
import functools
import multiprocessing
from concurrent.futures.thread import ThreadPoolExecutor
class SingletonTimeOut:
pool = None
@classmethod
def run(cls, to_run: functools.partial, timeout: float):
pool = cls.get_pool()
loop = cls.get_loop()
try:
task = loop.run_in_executor(pool, to_run)
return loop.run_until_complete(asyncio.wait_for(task, timeout=timeout))
except asyncio.TimeoutError as e:
error_type = type(e).__name__ #TODO
raise e
@classmethod
def get_pool(cls):
if cls.pool is None:
cls.pool = ThreadPoolExecutor(multiprocessing.cpu_count())
return cls.pool
@classmethod
def get_loop(cls):
try:
return asyncio.get_event_loop()
except RuntimeError:
asyncio.set_event_loop(asyncio.new_event_loop())
# print("NEW LOOP" + str(threading.current_thread().ident))
return asyncio.get_event_loop()
# ---------------
TIME_OUT = float('0.2') # seconds
def toto(input_items,nb_predictions):
return 1
to_run = functools.partial(toto,
input_items=1,
nb_predictions="a")
results = SingletonTimeOut.run(to_run, TIME_OUT)