我在Python中调用一个函数,我知道这个函数可能会暂停,并迫使我重新启动脚本。
我怎么调用这个函数或者我把它包装在什么里面,这样如果它花费超过5秒脚本就会取消它并做其他事情?
我在Python中调用一个函数,我知道这个函数可能会暂停,并迫使我重新启动脚本。
我怎么调用这个函数或者我把它包装在什么里面,这样如果它花费超过5秒脚本就会取消它并做其他事情?
当前回答
下面是对给定的基于线程的解决方案的轻微改进。
下面的代码支持异常:
def runFunctionCatchExceptions(func, *args, **kwargs):
try:
result = func(*args, **kwargs)
except Exception, message:
return ["exception", message]
return ["RESULT", result]
def runFunctionWithTimeout(func, args=(), kwargs={}, timeout_duration=10, default=None):
import threading
class InterruptableThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
self.result = default
def run(self):
self.result = runFunctionCatchExceptions(func, *args, **kwargs)
it = InterruptableThread()
it.start()
it.join(timeout_duration)
if it.isAlive():
return default
if it.result[0] == "exception":
raise it.result[1]
return it.result[1]
用5秒超时调用它:
result = timeout(remote_calculate, (myarg,), timeout_duration=5)
其他回答
有很多建议,但没有一个是使用并发的。期货,我认为这是最清晰的处理方式。
from concurrent.futures import ProcessPoolExecutor
# Warning: this does not terminate function if timeout
def timeout_five(fnc, *args, **kwargs):
with ProcessPoolExecutor() as p:
f = p.submit(fnc, *args, **kwargs)
return f.result(timeout=5)
超级简单的阅读和维护。
我们创建一个池,提交一个进程,然后等待5秒,然后引发一个TimeoutError,你可以根据需要捕获和处理它。
本机为python 3.2+,并反向移植到2.7 (pip install futures)。
线程和进程之间的切换非常简单,只需将ProcessPoolExecutor替换为ThreadPoolExecutor。
如果您想在超时时终止进程,我建议您查看Pebble。
我有一个不同的建议,这是一个纯函数(与线程建议相同的API),似乎工作得很好(基于这个线程的建议)
def timeout(func, args=(), kwargs={}, timeout_duration=1, default=None):
import signal
class TimeoutError(Exception):
pass
def handler(signum, frame):
raise TimeoutError()
# set the timeout handler
signal.signal(signal.SIGALRM, handler)
signal.alarm(timeout_duration)
try:
result = func(*args, **kwargs)
except TimeoutError as exc:
result = default
finally:
signal.alarm(0)
return result
伟大的,易于使用和可靠的PyPi项目超时装饰器(https://pypi.org/project/timeout-decorator/)
安装:
pip install timeout-decorator
用法:
import time
import timeout_decorator
@timeout_decorator.timeout(5)
def mytest():
print "Start"
for i in range(1,10):
time.sleep(1)
print "%d seconds have passed" % i
if __name__ == '__main__':
mytest()
下面是一个简单的例子,运行一个带有timeout的方法,并在成功时检索它的值。
import multiprocessing
import time
ret = {"foo": False}
def worker(queue):
"""worker function"""
ret = queue.get()
time.sleep(1)
ret["foo"] = True
queue.put(ret)
if __name__ == "__main__":
queue = multiprocessing.Queue()
queue.put(ret)
p = multiprocessing.Process(target=worker, args=(queue,))
p.start()
p.join(timeout=10)
if p.exitcode is None:
print("The worker timed out.")
else:
print(f"The worker completed and returned: {queue.get()}")
我在搜索单元测试的超时调用时遇到了这个线程。我没有在答案或第三方包中找到任何简单的东西,所以我写了下面的装饰器,你可以直接放入代码中:
import multiprocessing.pool
import functools
def timeout(max_timeout):
"""Timeout decorator, parameter in seconds."""
def timeout_decorator(item):
"""Wrap the original function."""
@functools.wraps(item)
def func_wrapper(*args, **kwargs):
"""Closure for function."""
pool = multiprocessing.pool.ThreadPool(processes=1)
async_result = pool.apply_async(item, args, kwargs)
# raises a TimeoutError if execution exceeds max_timeout
return async_result.get(max_timeout)
return func_wrapper
return timeout_decorator
然后就像这样简单地超时测试或任何你喜欢的函数:
@timeout(5.0) # if execution takes longer than 5 seconds, raise a TimeoutError
def test_base_regression(self):
...