我在Python中调用一个函数,我知道这个函数可能会暂停,并迫使我重新启动脚本。

我怎么调用这个函数或者我把它包装在什么里面,这样如果它花费超过5秒脚本就会取消它并做其他事情?


当前回答

我们也可以用信号来表示。我认为下面的例子会对你有用。与线程相比,它非常简单。

import signal

def timeout(signum, frame):
    raise myException

#this is an infinite loop, never ending under normal circumstances
def main():
    print 'Starting Main ',
    while 1:
        print 'in main ',

#SIGALRM is only usable on a unix platform
signal.signal(signal.SIGALRM, timeout)

#change 5 to however many seconds you need
signal.alarm(5)

try:
    main()
except myException:
    print "whoops"

其他回答

#!/usr/bin/python2
import sys, subprocess, threading
proc = subprocess.Popen(sys.argv[2:])
timer = threading.Timer(float(sys.argv[1]), proc.terminate)
timer.start()
proc.wait()
timer.cancel()
exit(proc.returncode)

有很多建议,但没有一个是使用并发的。期货,我认为这是最清晰的处理方式。

from concurrent.futures import ProcessPoolExecutor

# Warning: this does not terminate function if timeout
def timeout_five(fnc, *args, **kwargs):
    with ProcessPoolExecutor() as p:
        f = p.submit(fnc, *args, **kwargs)
        return f.result(timeout=5)

超级简单的阅读和维护。

我们创建一个池,提交一个进程,然后等待5秒,然后引发一个TimeoutError,你可以根据需要捕获和处理它。

本机为python 3.2+,并反向移植到2.7 (pip install futures)。

线程和进程之间的切换非常简单,只需将ProcessPoolExecutor替换为ThreadPoolExecutor。

如果您想在超时时终止进程,我建议您查看Pebble。

突出了

引发TimeoutError使用异常在超时时发出警报-可以很容易地修改 跨平台:Windows和Mac OS X 兼容性:Python 3.6+(我也在Python 2.7上进行了测试,它可以在很小的语法调整下工作)

有关平行地图的完整解释和扩展,请参见https://flipdazed.github.io/blog/quant%20dev/parallel-functions-with-timeouts

最小的例子

>>> @killer_call(timeout=4)
... def bar(x):
...        import time
...        time.sleep(x)
...        return x
>>> bar(10)
Traceback (most recent call last):
  ...
__main__.TimeoutError: function 'bar' timed out after 4s

正如预期的那样

>>> bar(2)
2

完整代码

import multiprocessing as mp
import multiprocessing.queues as mpq
import functools
import dill

from typing import Tuple, Callable, Dict, Optional, Iterable, List, Any

class TimeoutError(Exception):

    def __init__(self, func: Callable, timeout: int):
        self.t = timeout
        self.fname = func.__name__

    def __str__(self):
            return f"function '{self.fname}' timed out after {self.t}s"


def _lemmiwinks(func: Callable, args: Tuple, kwargs: Dict[str, Any], q: mp.Queue):
    """lemmiwinks crawls into the unknown"""
    q.put(dill.loads(func)(*args, **kwargs))


def killer_call(func: Callable = None, timeout: int = 10) -> Callable:
    """
    Single function call with a timeout

    Args:
        func: the function
        timeout: The timeout in seconds
    """

    if not isinstance(timeout, int):
        raise ValueError(f'timeout needs to be an int. Got: {timeout}')

    if func is None:
        return functools.partial(killer_call, timeout=timeout)

    @functools.wraps(killer_call)
    def _inners(*args, **kwargs) -> Any:
        q_worker = mp.Queue()
        proc = mp.Process(target=_lemmiwinks, args=(dill.dumps(func), args, kwargs, q_worker))
        proc.start()
        try:
            return q_worker.get(timeout=timeout)
        except mpq.Empty:
            raise TimeoutError(func, timeout)
        finally:
            try:
                proc.terminate()
            except:
                pass
    return _inners

if __name__ == '__main__':
    @killer_call(timeout=4)
    def bar(x):
        import time
        time.sleep(x)
        return x

    print(bar(2))
    bar(10)

笔记

由于dill的工作方式,您需要在函数内部导入。

这也意味着如果目标函数中有导入,这些函数可能与doctest不兼容。你将会遇到__import__未找到的问题。

伟大的,易于使用和可靠的PyPi项目超时装饰器(https://pypi.org/project/timeout-decorator/)

安装:

pip install timeout-decorator

用法:

import time
import timeout_decorator

@timeout_decorator.timeout(5)
def mytest():
    print "Start"
    for i in range(1,10):
        time.sleep(1)
        print "%d seconds have passed" % i

if __name__ == '__main__':
    mytest()

我在搜索单元测试的超时调用时遇到了这个线程。我没有在答案或第三方包中找到任何简单的东西,所以我写了下面的装饰器,你可以直接放入代码中:

import multiprocessing.pool
import functools

def timeout(max_timeout):
    """Timeout decorator, parameter in seconds."""
    def timeout_decorator(item):
        """Wrap the original function."""
        @functools.wraps(item)
        def func_wrapper(*args, **kwargs):
            """Closure for function."""
            pool = multiprocessing.pool.ThreadPool(processes=1)
            async_result = pool.apply_async(item, args, kwargs)
            # raises a TimeoutError if execution exceeds max_timeout
            return async_result.get(max_timeout)
        return func_wrapper
    return timeout_decorator

然后就像这样简单地超时测试或任何你喜欢的函数:

@timeout(5.0)  # if execution takes longer than 5 seconds, raise a TimeoutError
def test_base_regression(self):
    ...