PEP 8规定:

导入总是放在文件的顶部,就在任何模块注释和文档字符串之后,在模块全局变量和常量之前。

然而,如果我导入的类/方法/函数只在很少的情况下使用,那么在需要时进行导入肯定会更有效吗?

这不是:

class SomeClass(object):

    def not_often_called(self)
        from datetime import datetime
        self.datetime = datetime.now()

比这更有效率?

from datetime import datetime

class SomeClass(object):

    def not_often_called(self)
        self.datetime = datetime.now()

当前回答

模块导入非常快,但不是即时的。这意味着:

将导入放在模块的顶部是可以的,因为这是一个微不足道的成本,只需要支付一次。 将导入放在函数中会导致对该函数的调用花费更长的时间。

所以如果你关心效率,把进口放在最上面。只有在分析显示有帮助的情况下,才将它们移动到函数中(您进行了分析,以查看哪里可以最好地提高性能,对吗??)


我所见过的执行惰性导入的最佳理由是:

可选的库支持。如果您的代码有多个使用不同库的路径,如果没有安装可选库,请不要中断。 在插件的__init__.py中,该插件可能被导入,但实际上没有使用。例如Bazaar插件,它们使用bzrlib的惰性加载框架。

其他回答

I do not aspire to provide complete answer, because others have already done this very well. I just want to mention one use case when I find especially useful to import modules inside functions. My application uses python packages and modules stored in certain location as plugins. During application startup, the application walks through all the modules in the location and imports them, then it looks inside the modules and if it finds some mounting points for the plugins (in my case it is a subclass of a certain base class having a unique ID) it registers them. The number of plugins is large (now dozens, but maybe hundreds in the future) and each of them is used quite rarely. Having imports of third party libraries at the top of my plugin modules was a bit penalty during application startup. Especially some thirdparty libraries are heavy to import (e.g. import of plotly even tries to connect to internet and download something which was adding about one second to startup). By optimizing imports (calling them only in the functions where they are used) in the plugins I managed to shrink the startup from 10 seconds to some 2 seconds. That is a big difference for my users.

所以我的答案是否定的,不要总是把导入放在模块的顶部。

我采用了将所有导入放在使用它们的函数中,而不是放在模块的顶部的做法。

这样做的好处是能够更可靠地进行重构。当我将一个函数从一个模块移动到另一个模块时,我知道该函数将继续工作,并且保留所有遗留的测试。如果我将导入放在模块的顶部,当我移动一个函数时,我发现我最终要花费大量时间来完成新模块的导入并使其最小化。重构IDE可能会让这一点变得无关紧要。

正如在其他地方提到的那样,有一个速度惩罚。我在我的应用程序中测量了这一点,发现它对我的目的来说是微不足道的。

不需要搜索(例如grep)就能看到所有模块依赖关系也是很好的。然而,我关心模块依赖关系的原因通常是因为我正在安装、重构或移动由多个文件组成的整个系统,而不仅仅是单个模块。在这种情况下,我无论如何都要执行全局搜索,以确保具有系统级依赖关系。因此,我还没有找到全局导入来帮助我在实践中理解一个系统。

我通常把sys的导入放在if __name__=='__main__'检查中,然后将参数(如sys.argv[1:])传递给main()函数。这允许我在sys未被导入的上下文中使用main。

为了完成老谋子的回答和最初的问题:

当我们不得不处理循环依赖关系时,我们可以做一些“技巧”。假设我们正在处理模块a.py和b.py,它们分别包含x()和b.y()。然后:

我们可以移动模块底部的from导入之一。 我们可以将其中一个from导入移动到实际需要导入的函数或方法中(这并不总是可行的,因为您可能从多个地方使用它)。 我们可以把其中一个import改成import,就像import a

总结一下。如果您没有处理循环依赖关系,也没有使用某种技巧来避免它们,那么最好将所有导入放在顶部,因为原因已经在这个问题的其他答案中解释过了。请在做这些“技巧”时附上评论,这总是受欢迎的!:)

这是一个只有程序员才能决定的权衡。

Case 1在需要时才导入datetime模块(并进行任何可能需要的初始化),从而节省了一些内存和启动时间。请注意,“仅在被调用时”导入也意味着“每次被调用时”导入,因此第一次调用之后的每个调用仍然会产生执行导入的额外开销。

情况2通过提前导入datetime来节省一些执行时间和延迟,这样在调用not_often_called()时就会更快地返回,而且也不会在每次调用时都产生导入的开销。

除了效率,如果import语句是…前面。将它们隐藏在代码中会使查找某个组件所依赖的模块变得更加困难。

就我个人而言,我通常遵循PEP,除了单元测试之类的东西,我不希望总是加载这些东西,因为我知道除了测试代码之外,它们不会被使用。

在函数中导入变量/局部作用域可以提高性能。这取决于函数中导入对象的使用情况。如果你多次循环并访问一个模块全局对象,将它导入为本地会有帮助。

test.py

X=10
Y=11
Z=12
def add(i):
  i = i + 10

runlocal.py

from test import add, X, Y, Z

    def callme():
      x=X
      y=Y
      z=Z
      ladd=add 
      for i  in range(100000000):
        ladd(i)
        x+y+z

    callme()

run.py

from test import add, X, Y, Z

def callme():
  for i in range(100000000):
    add(i)
    X+Y+Z

callme()

在Linux上的时间显示了一个小的增益

/usr/bin/time -f "\t%E real,\t%U user,\t%S sys" python run.py 
    0:17.80 real,   17.77 user, 0.01 sys
/tmp/test$ /usr/bin/time -f "\t%E real,\t%U user,\t%S sys" python runlocal.py 
    0:14.23 real,   14.22 user, 0.01 sys

真实的是挂钟。用户是程序中的时间。Sys是系统调用的时间。

https://docs.python.org/3.5/reference/executionmodel.html#resolution-of-names