PEP 8规定:

导入总是放在文件的顶部,就在任何模块注释和文档字符串之后,在模块全局变量和常量之前。

然而,如果我导入的类/方法/函数只在很少的情况下使用,那么在需要时进行导入肯定会更有效吗?

这不是:

class SomeClass(object):

    def not_often_called(self)
        from datetime import datetime
        self.datetime = datetime.now()

比这更有效率?

from datetime import datetime

class SomeClass(object):

    def not_often_called(self)
        self.datetime = datetime.now()

当前回答

在函数中导入变量/局部作用域可以提高性能。这取决于函数中导入对象的使用情况。如果你多次循环并访问一个模块全局对象,将它导入为本地会有帮助。

test.py

X=10
Y=11
Z=12
def add(i):
  i = i + 10

runlocal.py

from test import add, X, Y, Z

    def callme():
      x=X
      y=Y
      z=Z
      ladd=add 
      for i  in range(100000000):
        ladd(i)
        x+y+z

    callme()

run.py

from test import add, X, Y, Z

def callme():
  for i in range(100000000):
    add(i)
    X+Y+Z

callme()

在Linux上的时间显示了一个小的增益

/usr/bin/time -f "\t%E real,\t%U user,\t%S sys" python run.py 
    0:17.80 real,   17.77 user, 0.01 sys
/tmp/test$ /usr/bin/time -f "\t%E real,\t%U user,\t%S sys" python runlocal.py 
    0:14.23 real,   14.22 user, 0.01 sys

真实的是挂钟。用户是程序中的时间。Sys是系统调用的时间。

https://docs.python.org/3.5/reference/executionmodel.html#resolution-of-names

其他回答

除了已经给出的优秀答案之外,值得注意的是导入的位置不仅仅是风格的问题。有时,模块具有需要首先导入或初始化的隐式依赖项,而顶层导入可能会导致违反所需的执行顺序。

这个问题经常出现在Apache Spark的Python API中,在导入任何pyspark包或模块之前,你需要初始化SparkContext。最好将pyspark导入放在保证SparkContext可用的范围内。

当函数被调用0次或1次时,第一种变体确实比第二种更有效。然而,对于第二次和后续调用,“导入每个调用”方法实际上效率较低。请参阅此链接,了解一种通过“惰性导入”将两种方法的优点结合起来的惰性加载技术。

但除了效率之外,还有其他原因可以解释为什么你会更喜欢其中一种。一种方法是让阅读代码的人更清楚地了解这个模块所具有的依赖关系。它们也有非常不同的失败特征——如果没有“datetime”模块,第一个将在加载时失败,而第二个直到方法被调用才会失败。

补充说明:在IronPython中,导入可能比在CPython中要昂贵一些,因为代码基本上是在导入时被编译的。

有趣的是,到目前为止,没有一个回答提到并行处理,当序列化的函数代码被推到其他核心时,可能需要将导入放在函数中,例如在ipyparallel的情况下。

这就像许多其他优化一样——你牺牲了一些可读性来换取速度。正如John提到的,如果您已经完成了分析作业,并且发现这是一个非常有用的更改,并且您需要额外的速度,那么就去做吧。最好把所有其他的导入都放在一起:

from foo import bar
from baz import qux
# Note: datetime is imported in SomeClass below

模块导入非常快,但不是即时的。这意味着:

将导入放在模块的顶部是可以的,因为这是一个微不足道的成本,只需要支付一次。 将导入放在函数中会导致对该函数的调用花费更长的时间。

所以如果你关心效率,把进口放在最上面。只有在分析显示有帮助的情况下,才将它们移动到函数中(您进行了分析,以查看哪里可以最好地提高性能,对吗??)


我所见过的执行惰性导入的最佳理由是:

可选的库支持。如果您的代码有多个使用不同库的路径,如果没有安装可选库,请不要中断。 在插件的__init__.py中,该插件可能被导入,但实际上没有使用。例如Bazaar插件,它们使用bzrlib的惰性加载框架。