PEP 8规定:

导入总是放在文件的顶部,就在任何模块注释和文档字符串之后,在模块全局变量和常量之前。

然而,如果我导入的类/方法/函数只在很少的情况下使用,那么在需要时进行导入肯定会更有效吗?

这不是:

class SomeClass(object):

    def not_often_called(self)
        from datetime import datetime
        self.datetime = datetime.now()

比这更有效率?

from datetime import datetime

class SomeClass(object):

    def not_often_called(self)
        self.datetime = datetime.now()

当前回答

有趣的是,到目前为止,没有一个回答提到并行处理,当序列化的函数代码被推到其他核心时,可能需要将导入放在函数中,例如在ipyparallel的情况下。

其他回答

有趣的是,到目前为止,没有一个回答提到并行处理,当序列化的函数代码被推到其他核心时,可能需要将导入放在函数中,例如在ipyparallel的情况下。

当函数被调用0次或1次时,第一种变体确实比第二种更有效。然而,对于第二次和后续调用,“导入每个调用”方法实际上效率较低。请参阅此链接,了解一种通过“惰性导入”将两种方法的优点结合起来的惰性加载技术。

但除了效率之外,还有其他原因可以解释为什么你会更喜欢其中一种。一种方法是让阅读代码的人更清楚地了解这个模块所具有的依赖关系。它们也有非常不同的失败特征——如果没有“datetime”模块,第一个将在加载时失败,而第二个直到方法被调用才会失败。

补充说明:在IronPython中,导入可能比在CPython中要昂贵一些,因为代码基本上是在导入时被编译的。

在函数中导入变量/局部作用域可以提高性能。这取决于函数中导入对象的使用情况。如果你多次循环并访问一个模块全局对象,将它导入为本地会有帮助。

test.py

X=10
Y=11
Z=12
def add(i):
  i = i + 10

runlocal.py

from test import add, X, Y, Z

    def callme():
      x=X
      y=Y
      z=Z
      ladd=add 
      for i  in range(100000000):
        ladd(i)
        x+y+z

    callme()

run.py

from test import add, X, Y, Z

def callme():
  for i in range(100000000):
    add(i)
    X+Y+Z

callme()

在Linux上的时间显示了一个小的增益

/usr/bin/time -f "\t%E real,\t%U user,\t%S sys" python run.py 
    0:17.80 real,   17.77 user, 0.01 sys
/tmp/test$ /usr/bin/time -f "\t%E real,\t%U user,\t%S sys" python runlocal.py 
    0:14.23 real,   14.22 user, 0.01 sys

真实的是挂钟。用户是程序中的时间。Sys是系统调用的时间。

https://docs.python.org/3.5/reference/executionmodel.html#resolution-of-names

我不太担心预先加载模块的效率。模块占用的内存不会很大(假设它足够模块化),启动成本可以忽略不计。

在大多数情况下,您希望在源文件的顶部加载模块。对于阅读代码的人来说,它可以更容易地区分哪个函数或对象来自哪个模块。

在代码的其他地方导入模块的一个很好的理由是,如果它在调试语句中使用。

例如:

do_something_with_x(x)

我可以用:

from pprint import pprint
pprint(x)
do_something_with_x(x)

当然,在代码的其他地方导入模块的另一个原因是,如果您需要动态导入它们。这是因为你几乎没有任何选择。

我不太担心预先加载模块的效率。模块占用的内存不会很大(假设它足够模块化),启动成本可以忽略不计。

我想提一下我的一个用例,与@John Millikin和@ v.k.提到的用例非常相似:

可选的进口

我使用Jupyter Notebook进行数据分析,我使用相同的IPython Notebook作为所有分析的模板。在某些情况下,我需要导入Tensorflow来做一些快速的模型运行,但有时我工作的地方,Tensorflow没有设置/导入很慢。在这些情况下,我将依赖于tensorflow的操作封装在一个helper函数中,在该函数中导入tensorflow,并将其绑定到一个按钮。

这样,我就可以“重新启动并运行全部”,而不必等待导入,也不必在导入失败时恢复其余的单元格。