我必须在r中把一个向量分成n个相等大小的块,我找不到任何基函数来做这个。谷歌也没帮上什么忙。这是我目前想到的;

x <- 1:10
n <- 3
chunk <- function(x,n) split(x, factor(sort(rank(x)%%n)))
chunk(x,n)
$`0`
[1] 1 2 3

$`1`
[1] 4 5 6 7

$`2`
[1]  8  9 10

当前回答

我需要一个接受数据参数的函数。Table(引号中)和另一个参数,该参数是原始data.table的子集中行数的上限。这个函数产生任意数量的数据。表的上限允许:

library(data.table)    
split_dt <- function(x,y) 
    {
    for(i in seq(from=1,to=nrow(get(x)),by=y)) 
        {df_ <<- get(x)[i:(i + y)];
            assign(paste0("df_",i),df_,inherits=TRUE)}
    rm(df_,inherits=TRUE)
    }

这个函数给出了一系列数据。命名为df_[number]的表,其起始行来自原始数据。表中的名称。最后一个数据。表可以很短,并且填满了NAs,所以你必须将其子集返回到任何剩下的数据。这种类型的函数很有用,因为某些GIS软件对您可以导入的地址引脚数量有限制。切片数据。不建议将表分成更小的块,但这可能是不可避免的。

其他回答

如果你不喜欢split()并且你不介意NAs填充你的短尾巴:

chunk <- function(x, n) { if((length(x)%%n)==0) {return(matrix(x, nrow=n))} else {return(matrix(append(x, rep(NA, n-(length(x)%%n))), nrow=n))} }

返回矩阵([,1:ncol])的列是您正在寻找的机器人。

简单的函数通过简单地使用索引来分割一个向量-不需要过于复杂

vsplit <- function(v, n) {
    l = length(v)
    r = l/n
    return(lapply(1:n, function(i) {
        s = max(1, round(r*(i-1))+1)
        e = min(l, round(r*i))
        return(v[s:e])
    }))
}

还有一种可能是package parallel中的splitIndices函数:

library(parallel)
splitIndices(20, 3)

给:

[[1]]
[1] 1 2 3 4 5 6 7

[[2]]
[1]  8  9 10 11 12 13

[[3]]
[1] 14 15 16 17 18 19 20

注意:这只适用于数值。如果你想拆分一个字符向量,你需要做一些索引:lapply(splitIndices(20,3), \(x) letters[1:20][x])

这将以不同的方式划分它,但我认为这仍然是一个相当不错的列表结构:

chunk.2 <- function(x, n, force.number.of.groups = TRUE, len = length(x), groups = trunc(len/n), overflow = len%%n) { 
  if(force.number.of.groups) {
    f1 <- as.character(sort(rep(1:n, groups)))
    f <- as.character(c(f1, rep(n, overflow)))
  } else {
    f1 <- as.character(sort(rep(1:groups, n)))
    f <- as.character(c(f1, rep("overflow", overflow)))
  }
  
  g <- split(x, f)
  
  if(force.number.of.groups) {
    g.names <- names(g)
    g.names.ordered <- as.character(sort(as.numeric(g.names)))
  } else {
    g.names <- names(g[-length(g)])
    g.names.ordered <- as.character(sort(as.numeric(g.names)))
    g.names.ordered <- c(g.names.ordered, "overflow")
  }
  
  return(g[g.names.ordered])
}

这将给你以下,取决于你想要它的格式:

> x <- 1:10; n <- 3
> chunk.2(x, n, force.number.of.groups = FALSE)
$`1`
[1] 1 2 3

$`2`
[1] 4 5 6

$`3`
[1] 7 8 9

$overflow
[1] 10

> chunk.2(x, n, force.number.of.groups = TRUE)
$`1`
[1] 1 2 3

$`2`
[1] 4 5 6

$`3`
[1]  7  8  9 10

使用这些设置运行几个计时:

set.seed(42)
x <- rnorm(1:1e7)
n <- 3

然后我们得到以下结果:

> system.time(chunk(x, n)) # your function 
   user  system elapsed 
 29.500   0.620  30.125 

> system.time(chunk.2(x, n, force.number.of.groups = TRUE))
   user  system elapsed 
  5.360   0.300   5.663 

注意:将as.factor()更改为as.character()使我的函数速度提高了两倍。

试试ggplot2函数,cut_number:

library(ggplot2)
x <- 1:10
n <- 3
cut_number(x, n) # labels = FALSE if you just want an integer result
#>  [1] [1,4]  [1,4]  [1,4]  [1,4]  (4,7]  (4,7]  (4,7]  (7,10] (7,10] (7,10]
#> Levels: [1,4] (4,7] (7,10]

# if you want it split into a list:
split(x, cut_number(x, n))
#> $`[1,4]`
#> [1] 1 2 3 4
#> 
#> $`(4,7]`
#> [1] 5 6 7
#> 
#> $`(7,10]`
#> [1]  8  9 10