什么是甲状腺?它们用于什么?
当前回答
类,在Python,是一个对象,和任何其他对象一样,它是一个例子“什么”。这个“什么”是所谓的MetaClass。这个MetaClass是一个特殊类型的类,创造了其他类的对象。因此,MetaClass负责创造新的类。
Class Name Tuple 具有由 Class A 继承的基类 词典具有所有类方法和类变量
另一种方式创建一个金属类是“金属类”的关键词,将金属类定义为一个简单的类,在继承类的参数中,通过金属类=金属类_名称。
Metaclass 可以在以下情况下具体使用:
其他回答
甲特克拉斯(甲特克拉斯)是一类,讲述了(某些)其他类应该是如何形成的。
这是一个案例,我看到甲状腺作为解决我的问题:我有一个真正复杂的问题,可能可以是不同的解决,但我选择用甲状腺解决它。 由于复杂性,这是我写的几个模块之一,在模块上的评论超过了编写的代码的数量。
#!/usr/bin/env python
# Copyright (C) 2013-2014 Craig Phillips. All rights reserved.
# This requires some explaining. The point of this metaclass excercise is to
# create a static abstract class that is in one way or another, dormant until
# queried. I experimented with creating a singlton on import, but that did
# not quite behave how I wanted it to. See now here, we are creating a class
# called GsyncOptions, that on import, will do nothing except state that its
# class creator is GsyncOptionsType. This means, docopt doesn't parse any
# of the help document, nor does it start processing command line options.
# So importing this module becomes really efficient. The complicated bit
# comes from requiring the GsyncOptions class to be static. By that, I mean
# any property on it, may or may not exist, since they are not statically
# defined; so I can't simply just define the class with a whole bunch of
# properties that are @property @staticmethods.
#
# So here's how it works:
#
# Executing 'from libgsync.options import GsyncOptions' does nothing more
# than load up this module, define the Type and the Class and import them
# into the callers namespace. Simple.
#
# Invoking 'GsyncOptions.debug' for the first time, or any other property
# causes the __metaclass__ __getattr__ method to be called, since the class
# is not instantiated as a class instance yet. The __getattr__ method on
# the type then initialises the class (GsyncOptions) via the __initialiseClass
# method. This is the first and only time the class will actually have its
# dictionary statically populated. The docopt module is invoked to parse the
# usage document and generate command line options from it. These are then
# paired with their defaults and what's in sys.argv. After all that, we
# setup some dynamic properties that could not be defined by their name in
# the usage, before everything is then transplanted onto the actual class
# object (or static class GsyncOptions).
#
# Another piece of magic, is to allow command line options to be set in
# in their native form and be translated into argparse style properties.
#
# Finally, the GsyncListOptions class is actually where the options are
# stored. This only acts as a mechanism for storing options as lists, to
# allow aggregation of duplicate options or options that can be specified
# multiple times. The __getattr__ call hides this by default, returning the
# last item in a property's list. However, if the entire list is required,
# calling the 'list()' method on the GsyncOptions class, returns a reference
# to the GsyncListOptions class, which contains all of the same properties
# but as lists and without the duplication of having them as both lists and
# static singlton values.
#
# So this actually means that GsyncOptions is actually a static proxy class...
#
# ...And all this is neatly hidden within a closure for safe keeping.
def GetGsyncOptionsType():
class GsyncListOptions(object):
__initialised = False
class GsyncOptionsType(type):
def __initialiseClass(cls):
if GsyncListOptions._GsyncListOptions__initialised: return
from docopt import docopt
from libgsync.options import doc
from libgsync import __version__
options = docopt(
doc.__doc__ % __version__,
version = __version__,
options_first = True
)
paths = options.pop('<path>', None)
setattr(cls, "destination_path", paths.pop() if paths else None)
setattr(cls, "source_paths", paths)
setattr(cls, "options", options)
for k, v in options.iteritems():
setattr(cls, k, v)
GsyncListOptions._GsyncListOptions__initialised = True
def list(cls):
return GsyncListOptions
def __getattr__(cls, name):
cls.__initialiseClass()
return getattr(GsyncListOptions, name)[-1]
def __setattr__(cls, name, value):
# Substitut option names: --an-option-name for an_option_name
import re
name = re.sub(r'^__', "", re.sub(r'-', "_", name))
listvalue = []
# Ensure value is converted to a list type for GsyncListOptions
if isinstance(value, list):
if value:
listvalue = [] + value
else:
listvalue = [ None ]
else:
listvalue = [ value ]
type.__setattr__(GsyncListOptions, name, listvalue)
# Cleanup this module to prevent tinkering.
import sys
module = sys.modules[__name__]
del module.__dict__['GetGsyncOptionsType']
return GsyncOptionsType
# Our singlton abstract proxy class.
class GsyncOptions(object):
__metaclass__ = GetGsyncOptionsType()
什么是Metaclasses?你用它们用于什么?
>>> Class(...)
instance
>>> Metaclass(...)
Class
>>> type('Foo', (object,), {}) # requires a name, bases, and a namespace
<class '__main__.Foo'>
每当你创建一个类时,你都会使用一个类型:
class Foo(object):
'demo'
>>> Foo
<class '__main__.Foo'>
>>> isinstance(Foo, type), isinstance(Foo, object)
(True, True)
name = 'Foo'
bases = (object,)
namespace = {'__doc__': 'demo'}
Foo = type(name, bases, namespace)
>>> Foo.__dict__
dict_proxy({'__dict__': <attribute '__dict__' of 'Foo' objects>,
'__module__': '__main__', '__weakref__': <attribute '__weakref__'
of 'Foo' objects>, '__doc__': 'demo'})
(在 __dict__: __module__ 类的内容上有一个侧笔记,因为类必须知道它们在哪里定义,而 __dict__ 和 __weakref__ 是因为我们不定义 __slots__ - 如果我们定义 __slots__ 我们会在例子中节省一些空间,因为我们可以通过排除它们来排除 __dict__ 和 __weakref__。
>>> Baz = type('Bar', (object,), {'__doc__': 'demo', '__slots__': ()})
>>> Baz.__dict__
mappingproxy({'__doc__': 'demo', '__slots__': (), '__module__': '__main__'})
我们可以像任何其他类定义一样扩展类型:
>>> Foo
<class '__main__.Foo'>
class Type(type):
def __repr__(cls):
"""
>>> Baz
Type('Baz', (Foo, Bar,), {'__module__': '__main__', '__doc__': None})
>>> eval(repr(Baz))
Type('Baz', (Foo, Bar,), {'__module__': '__main__', '__doc__': None})
"""
metaname = type(cls).__name__
name = cls.__name__
parents = ', '.join(b.__name__ for b in cls.__bases__)
if parents:
parents += ','
namespace = ', '.join(': '.join(
(repr(k), repr(v) if not isinstance(v, type) else v.__name__))
for k, v in cls.__dict__.items())
return '{0}(\'{1}\', ({2}), {{{3}}})'.format(metaname, name, parents, namespace)
def __eq__(cls, other):
"""
>>> Baz == eval(repr(Baz))
True
"""
return (cls.__name__, cls.__bases__, cls.__dict__) == (
other.__name__, other.__bases__, other.__dict__)
>>> class Bar(object): pass
>>> Baz = Type('Baz', (Foo, Bar,), {'__module__': '__main__', '__doc__': None})
>>> Baz
Type('Baz', (Foo, Bar,), {'__module__': '__main__', '__doc__': None})
但是,与 eval(repr(Class))的进一步检查是不可能的(因为函数将是相当不可能从他们的默认 __repr__ 的 eval 。
from collections import OrderedDict
class OrderedType(Type):
@classmethod
def __prepare__(metacls, name, bases, **kwargs):
return OrderedDict()
def __new__(cls, name, bases, namespace, **kwargs):
result = Type.__new__(cls, name, bases, dict(namespace))
result.members = tuple(namespace)
return result
class OrderedMethodsObject(object, metaclass=OrderedType):
def method1(self): pass
def method2(self): pass
def method3(self): pass
def method4(self): pass
>>> OrderedMethodsObject.members
('__module__', '__qualname__', 'method1', 'method2', 'method3', 'method4')
>>> inspect.getmro(OrderedType)
(<class '__main__.OrderedType'>, <class '__main__.Type'>, <class 'type'>, <class 'object'>)
而且它大约有正确的回报(除非我们能找到代表我们的功能的方式,否则我们就不能再评估):
>>> OrderedMethodsObject
OrderedType('OrderedMethodsObject', (object,), {'method1': <function OrderedMethodsObject.method1 at 0x0000000002DB01E0>, 'members': ('__module__', '__qualname__', 'method1', 'method2', 'method3', 'method4'), 'method3': <function OrderedMet
hodsObject.method3 at 0x0000000002DB02F0>, 'method2': <function OrderedMethodsObject.method2 at 0x0000000002DB0268>, '__module__': '__main__', '__weakref__': <attribute '__weakref__' of 'OrderedMethodsObject' objects>, '__doc__': None, '__d
ict__': <attribute '__dict__' of 'OrderedMethodsObject' objects>, 'method4': <function OrderedMethodsObject.method4 at 0x0000000002DB0378>})
此分類上一篇: tl;dr version
类型(obj)函数会给你一个对象的类型。
一个阶级的类型( )是它的甲型阶级。
使用甲状腺:
class Foo(object):
__metaclass__ = MyMetaClass
一个类的类是一个类的类 - 一个类的身体是转移到一个类的论点,它被用来构建一个类。
在这里,你可以阅读如何使用金属玻璃来自定义课堂建筑。
Python 3 更新
在一个甲状腺中,有(目前)两个关键方法:
__prepare__ 允许您提供自定义地图(如 OrderedDict)作为名称空间使用,而类正在创建。
__new__ 负责最终类的实际创建/修改。
一个色彩色彩,不做任何东西 - 额外的金属类会喜欢:
class Meta(type):
def __prepare__(metaclass, cls, bases):
return dict()
def __new__(metacls, cls, bases, clsdict):
return super().__new__(metacls, cls, bases, clsdict)
一个简单的例子:
说你想要一些简单的验证代码在你的属性上运行 - 因为它必须总是一个 int 或 str. 没有一个 metaclass,你的类会看起来像:
class Person:
weight = ValidateType('weight', int)
age = ValidateType('age', int)
name = ValidateType('name', str)
正如你可以看到的那样,你必须重复属性的名称两次,这使得类型与刺激的错误一起可能。
一个简单的甲状腺可以解决这个问题:
class Person(metaclass=Validator):
weight = ValidateType(int)
age = ValidateType(int)
name = ValidateType(str)
class Validator(type):
def __new__(metacls, cls, bases, clsdict):
# search clsdict looking for ValidateType descriptors
for name, attr in clsdict.items():
if isinstance(attr, ValidateType):
attr.name = name
attr.attr = '_' + name
# create final class and return it
return super().__new__(metacls, cls, bases, clsdict)
一个样本运行:
p = Person()
p.weight = 9
print(p.weight)
p.weight = '9'
生产:
9
Traceback (most recent call last):
File "simple_meta.py", line 36, in <module>
p.weight = '9'
File "simple_meta.py", line 24, in __set__
(self.name, self.type, value))
TypeError: weight must be of type(s) <class 'int'> (got '9')
注意:这个例子是简单的,它也可能已经完成了一个类装饰师,但假设一个真正的金属玻璃会做得更多。
class ValidateType:
def __init__(self, type):
self.name = None # will be set by metaclass
self.attr = None # will be set by metaclass
self.type = type
def __get__(self, inst, cls):
if inst is None:
return self
else:
return inst.__dict__[self.attr]
def __set__(self, inst, value):
if not isinstance(value, self.type):
raise TypeError('%s must be of type(s) %s (got %r)' %
(self.name, self.type, value))
else:
inst.__dict__[self.attr] = value
上面的答案是正确的。
但读者可能来到这里寻找关于类似名称的内部课程的答案,他们在受欢迎的图书馆,如Django和WTForms。
相反,这些是班级的命令之内的名称空间,它们是用内部班级为可读性而建造的。
在这个特殊的例子领域,抽象是显而易见地与作者模型的领域分开。
from django.db import models
class Author(models.Model):
name = models.CharField(max_length=50)
email = models.EmailField()
class Meta:
abstract = True
另一个例子是WTForms的文档:
from wtforms.form import Form
from wtforms.csrf.session import SessionCSRF
from wtforms.fields import StringField
class MyBaseForm(Form):
class Meta:
csrf = True
csrf_class = SessionCSRF
name = StringField("name")
这个合成不会在Python编程语言中得到特别的处理. Meta 不是这里的一个关键词,也不会引发 meta 类行为. 相反,第三方图书馆代码在 Django 和 WTForms 等包中,在某些类的构建者和其他地方读到这个属性。
这些声明的存在改变了具有这些声明的类别的行为. 例如,WTForms 阅读 self.Meta.csrf 以确定表格是否需要一个 csrf 字段。
推荐文章
- Python glob多个文件类型
- 如何可靠地打开与当前运行脚本在同一目录下的文件
- Python csv字符串到数组
- 如何将类标记为已弃用?
- 如何在Python中进行热编码?
- 如何嵌入HTML到IPython输出?
- 在Python生成器上使用“send”函数的目的是什么?
- 是否可以将已编译的.pyc文件反编译为.py文件?
- Django模型表单对象的自动创建日期
- 在Python中包装长行
- 如何计算两个时间串之间的时间间隔
- 我如何才能找到一个Python函数的参数的数量?
- getter和setter是糟糕的设计吗?相互矛盾的建议
- 您可以使用生成器函数来做什么?
- 将Python诗歌与Docker集成