什么是甲状腺?它们用于什么?
当前回答
Python 类本身是它们的 meta 类的对象 - 例如。
默认的金属类,当您确定类时应用于:
class foo:
...
例如,假设您正在构建一个ORM访问数据库,并且您希望每个表中的记录来自一个类地图到该表(基于字段,业务规则等),一个可能的使用MetaClass是例如,连接池逻辑,由所有表中的记录的所有类共享。
当你定义甲型时,你可以分类类型,并且可以超越下列魔法方法来插入你的逻辑。
class somemeta(type):
__new__(mcs, name, bases, clsdict):
"""
mcs: is the base metaclass, in this case type.
name: name of the new class, as provided by the user.
bases: tuple of base classes
clsdict: a dictionary containing all methods and attributes defined on class
you must return a class object by invoking the __new__ constructor on the base metaclass.
ie:
return type.__call__(mcs, name, bases, clsdict).
in the following case:
class foo(baseclass):
__metaclass__ = somemeta
an_attr = 12
def bar(self):
...
@classmethod
def foo(cls):
...
arguments would be : ( somemeta, "foo", (baseclass, baseofbase,..., object), {"an_attr":12, "bar": <function>, "foo": <bound class method>}
you can modify any of these values before passing on to type
"""
return type.__call__(mcs, name, bases, clsdict)
def __init__(self, name, bases, clsdict):
"""
called after type has been created. unlike in standard classes, __init__ method cannot modify the instance (cls) - and should be used for class validaton.
"""
pass
def __prepare__():
"""
returns a dict or something that can be used as a namespace.
the type will then attach methods and attributes from class definition to it.
call order :
somemeta.__new__ -> type.__new__ -> type.__init__ -> somemeta.__init__
"""
return dict()
def mymethod(cls):
""" works like a classmethod, but for class objects. Also, my method will not be visible to instances of cls.
"""
pass
无论如何,这两种是最常用的<unk>子,甲板是强大的,上面没有附近和完整的用途列表用于甲板。
其他回答
什么是Metaclasses?你用它们用于什么?
>>> Class(...)
instance
>>> Metaclass(...)
Class
>>> type('Foo', (object,), {}) # requires a name, bases, and a namespace
<class '__main__.Foo'>
每当你创建一个类时,你都会使用一个类型:
class Foo(object):
'demo'
>>> Foo
<class '__main__.Foo'>
>>> isinstance(Foo, type), isinstance(Foo, object)
(True, True)
name = 'Foo'
bases = (object,)
namespace = {'__doc__': 'demo'}
Foo = type(name, bases, namespace)
>>> Foo.__dict__
dict_proxy({'__dict__': <attribute '__dict__' of 'Foo' objects>,
'__module__': '__main__', '__weakref__': <attribute '__weakref__'
of 'Foo' objects>, '__doc__': 'demo'})
(在 __dict__: __module__ 类的内容上有一个侧笔记,因为类必须知道它们在哪里定义,而 __dict__ 和 __weakref__ 是因为我们不定义 __slots__ - 如果我们定义 __slots__ 我们会在例子中节省一些空间,因为我们可以通过排除它们来排除 __dict__ 和 __weakref__。
>>> Baz = type('Bar', (object,), {'__doc__': 'demo', '__slots__': ()})
>>> Baz.__dict__
mappingproxy({'__doc__': 'demo', '__slots__': (), '__module__': '__main__'})
我们可以像任何其他类定义一样扩展类型:
>>> Foo
<class '__main__.Foo'>
class Type(type):
def __repr__(cls):
"""
>>> Baz
Type('Baz', (Foo, Bar,), {'__module__': '__main__', '__doc__': None})
>>> eval(repr(Baz))
Type('Baz', (Foo, Bar,), {'__module__': '__main__', '__doc__': None})
"""
metaname = type(cls).__name__
name = cls.__name__
parents = ', '.join(b.__name__ for b in cls.__bases__)
if parents:
parents += ','
namespace = ', '.join(': '.join(
(repr(k), repr(v) if not isinstance(v, type) else v.__name__))
for k, v in cls.__dict__.items())
return '{0}(\'{1}\', ({2}), {{{3}}})'.format(metaname, name, parents, namespace)
def __eq__(cls, other):
"""
>>> Baz == eval(repr(Baz))
True
"""
return (cls.__name__, cls.__bases__, cls.__dict__) == (
other.__name__, other.__bases__, other.__dict__)
>>> class Bar(object): pass
>>> Baz = Type('Baz', (Foo, Bar,), {'__module__': '__main__', '__doc__': None})
>>> Baz
Type('Baz', (Foo, Bar,), {'__module__': '__main__', '__doc__': None})
但是,与 eval(repr(Class))的进一步检查是不可能的(因为函数将是相当不可能从他们的默认 __repr__ 的 eval 。
from collections import OrderedDict
class OrderedType(Type):
@classmethod
def __prepare__(metacls, name, bases, **kwargs):
return OrderedDict()
def __new__(cls, name, bases, namespace, **kwargs):
result = Type.__new__(cls, name, bases, dict(namespace))
result.members = tuple(namespace)
return result
class OrderedMethodsObject(object, metaclass=OrderedType):
def method1(self): pass
def method2(self): pass
def method3(self): pass
def method4(self): pass
>>> OrderedMethodsObject.members
('__module__', '__qualname__', 'method1', 'method2', 'method3', 'method4')
>>> inspect.getmro(OrderedType)
(<class '__main__.OrderedType'>, <class '__main__.Type'>, <class 'type'>, <class 'object'>)
而且它大约有正确的回报(除非我们能找到代表我们的功能的方式,否则我们就不能再评估):
>>> OrderedMethodsObject
OrderedType('OrderedMethodsObject', (object,), {'method1': <function OrderedMethodsObject.method1 at 0x0000000002DB01E0>, 'members': ('__module__', '__qualname__', 'method1', 'method2', 'method3', 'method4'), 'method3': <function OrderedMet
hodsObject.method3 at 0x0000000002DB02F0>, 'method2': <function OrderedMethodsObject.method2 at 0x0000000002DB0268>, '__module__': '__main__', '__weakref__': <attribute '__weakref__' of 'OrderedMethodsObject' objects>, '__doc__': None, '__d
ict__': <attribute '__dict__' of 'OrderedMethodsObject' objects>, 'method4': <function OrderedMethodsObject.method4 at 0x0000000002DB0378>})
除了发布的答案,我可以说,一个甲状腺可以定义一个类的行为,所以,你可以明确设置你的甲状腺,每当Python获得一个关键词类,然后它开始搜索甲状腺,如果它没有找到 - 默认甲状腺类型用于创建一个类的对象,使用 __metaclass__属性,你可以设置你的甲状腺类:
class MyClass:
__metaclass__ = type
# write here other method
# write here one more method
print(MyClass.__metaclass__)
它将产生这样的产量:
class 'type'
当然,你可以创建自己的金属类来定义使用你的类创建的任何类的行为。
要做到这一点,您的默认金属类型类必须继承,因为这是主要金属类:
class MyMetaClass(type):
__metaclass__ = type
# you can write here any behaviour you want
class MyTestClass:
__metaclass__ = MyMetaClass
Obj = MyTestClass()
print(Obj.__metaclass__)
print(MyMetaClass.__metaclass__)
产量将是:
class '__main__.MyMetaClass'
class 'type'
甲特克拉斯(甲特克拉斯)是一类,讲述了(某些)其他类应该是如何形成的。
这是一个案例,我看到甲状腺作为解决我的问题:我有一个真正复杂的问题,可能可以是不同的解决,但我选择用甲状腺解决它。 由于复杂性,这是我写的几个模块之一,在模块上的评论超过了编写的代码的数量。
#!/usr/bin/env python
# Copyright (C) 2013-2014 Craig Phillips. All rights reserved.
# This requires some explaining. The point of this metaclass excercise is to
# create a static abstract class that is in one way or another, dormant until
# queried. I experimented with creating a singlton on import, but that did
# not quite behave how I wanted it to. See now here, we are creating a class
# called GsyncOptions, that on import, will do nothing except state that its
# class creator is GsyncOptionsType. This means, docopt doesn't parse any
# of the help document, nor does it start processing command line options.
# So importing this module becomes really efficient. The complicated bit
# comes from requiring the GsyncOptions class to be static. By that, I mean
# any property on it, may or may not exist, since they are not statically
# defined; so I can't simply just define the class with a whole bunch of
# properties that are @property @staticmethods.
#
# So here's how it works:
#
# Executing 'from libgsync.options import GsyncOptions' does nothing more
# than load up this module, define the Type and the Class and import them
# into the callers namespace. Simple.
#
# Invoking 'GsyncOptions.debug' for the first time, or any other property
# causes the __metaclass__ __getattr__ method to be called, since the class
# is not instantiated as a class instance yet. The __getattr__ method on
# the type then initialises the class (GsyncOptions) via the __initialiseClass
# method. This is the first and only time the class will actually have its
# dictionary statically populated. The docopt module is invoked to parse the
# usage document and generate command line options from it. These are then
# paired with their defaults and what's in sys.argv. After all that, we
# setup some dynamic properties that could not be defined by their name in
# the usage, before everything is then transplanted onto the actual class
# object (or static class GsyncOptions).
#
# Another piece of magic, is to allow command line options to be set in
# in their native form and be translated into argparse style properties.
#
# Finally, the GsyncListOptions class is actually where the options are
# stored. This only acts as a mechanism for storing options as lists, to
# allow aggregation of duplicate options or options that can be specified
# multiple times. The __getattr__ call hides this by default, returning the
# last item in a property's list. However, if the entire list is required,
# calling the 'list()' method on the GsyncOptions class, returns a reference
# to the GsyncListOptions class, which contains all of the same properties
# but as lists and without the duplication of having them as both lists and
# static singlton values.
#
# So this actually means that GsyncOptions is actually a static proxy class...
#
# ...And all this is neatly hidden within a closure for safe keeping.
def GetGsyncOptionsType():
class GsyncListOptions(object):
__initialised = False
class GsyncOptionsType(type):
def __initialiseClass(cls):
if GsyncListOptions._GsyncListOptions__initialised: return
from docopt import docopt
from libgsync.options import doc
from libgsync import __version__
options = docopt(
doc.__doc__ % __version__,
version = __version__,
options_first = True
)
paths = options.pop('<path>', None)
setattr(cls, "destination_path", paths.pop() if paths else None)
setattr(cls, "source_paths", paths)
setattr(cls, "options", options)
for k, v in options.iteritems():
setattr(cls, k, v)
GsyncListOptions._GsyncListOptions__initialised = True
def list(cls):
return GsyncListOptions
def __getattr__(cls, name):
cls.__initialiseClass()
return getattr(GsyncListOptions, name)[-1]
def __setattr__(cls, name, value):
# Substitut option names: --an-option-name for an_option_name
import re
name = re.sub(r'^__', "", re.sub(r'-', "_", name))
listvalue = []
# Ensure value is converted to a list type for GsyncListOptions
if isinstance(value, list):
if value:
listvalue = [] + value
else:
listvalue = [ None ]
else:
listvalue = [ value ]
type.__setattr__(GsyncListOptions, name, listvalue)
# Cleanup this module to prevent tinkering.
import sys
module = sys.modules[__name__]
del module.__dict__['GetGsyncOptionsType']
return GsyncOptionsType
# Our singlton abstract proxy class.
class GsyncOptions(object):
__metaclass__ = GetGsyncOptionsType()
下面是另一个例子,它可以用于什么:
您可以使用甲状腺来改变其例子(类)的功能。
class MetaMemberControl(type):
__slots__ = ()
@classmethod
def __prepare__(mcs, f_cls_name, f_cls_parents, # f_cls means: future class
meta_args=None, meta_options=None): # meta_args and meta_options is not necessarily needed, just so you know.
f_cls_attr = dict()
if not "do something or if you want to define your cool stuff of dict...":
return dict(make_your_special_dict=None)
else:
return f_cls_attr
def __new__(mcs, f_cls_name, f_cls_parents, f_cls_attr,
meta_args=None, meta_options=None):
original_getattr = f_cls_attr.get('__getattribute__')
original_setattr = f_cls_attr.get('__setattr__')
def init_getattr(self, item):
if not item.startswith('_'): # you can set break points at here
alias_name = '_' + item
if alias_name in f_cls_attr['__slots__']:
item = alias_name
if original_getattr is not None:
return original_getattr(self, item)
else:
return super(eval(f_cls_name), self).__getattribute__(item)
def init_setattr(self, key, value):
if not key.startswith('_') and ('_' + key) in f_cls_attr['__slots__']:
raise AttributeError(f"you can't modify private members:_{key}")
if original_setattr is not None:
original_setattr(self, key, value)
else:
super(eval(f_cls_name), self).__setattr__(key, value)
f_cls_attr['__getattribute__'] = init_getattr
f_cls_attr['__setattr__'] = init_setattr
cls = super().__new__(mcs, f_cls_name, f_cls_parents, f_cls_attr)
return cls
class Human(metaclass=MetaMemberControl):
__slots__ = ('_age', '_name')
def __init__(self, name, age):
self._name = name
self._age = age
def __getattribute__(self, item):
"""
is just for IDE recognize.
"""
return super().__getattribute__(item)
""" with MetaMemberControl then you don't have to write as following
@property
def name(self):
return self._name
@property
def age(self):
return self._age
"""
def test_demo():
human = Human('Carson', 27)
# human.age = 18 # you can't modify private members:_age <-- this is defined by yourself.
# human.k = 18 # 'Human' object has no attribute 'k' <-- system error.
age1 = human._age # It's OK, although the IDE will show some warnings. (Access to a protected member _age of a class)
age2 = human.age # It's OK! see below:
"""
if you do not define `__getattribute__` at the class of Human,
the IDE will show you: Unresolved attribute reference 'age' for class 'Human'
but it's ok on running since the MetaMemberControl will help you.
"""
if __name__ == '__main__':
test_demo()
金星是强大的,有很多事情(如猴子魔法)你可以用它,但要小心,这可能只是你知道的。
类,在Python,是一个对象,和任何其他对象一样,它是一个例子“什么”。这个“什么”是所谓的MetaClass。这个MetaClass是一个特殊类型的类,创造了其他类的对象。因此,MetaClass负责创造新的类。
Class Name Tuple 具有由 Class A 继承的基类 词典具有所有类方法和类变量
另一种方式创建一个金属类是“金属类”的关键词,将金属类定义为一个简单的类,在继承类的参数中,通过金属类=金属类_名称。
Metaclass 可以在以下情况下具体使用:
推荐文章
- Python glob多个文件类型
- 如何可靠地打开与当前运行脚本在同一目录下的文件
- Python csv字符串到数组
- 如何将类标记为已弃用?
- 如何在Python中进行热编码?
- 如何嵌入HTML到IPython输出?
- 在Python生成器上使用“send”函数的目的是什么?
- 是否可以将已编译的.pyc文件反编译为.py文件?
- Django模型表单对象的自动创建日期
- 在Python中包装长行
- 如何计算两个时间串之间的时间间隔
- 我如何才能找到一个Python函数的参数的数量?
- getter和setter是糟糕的设计吗?相互矛盾的建议
- 您可以使用生成器函数来做什么?
- 将Python诗歌与Docker集成