什么是甲状腺?它们用于什么?
当前回答
其他人已经解释了金属玻璃是如何工作的,它们是如何适应Python类型系统的,这里有一个例子,它们可以用于什么。在我写的测试框架中,我想跟踪在哪个类被定义的顺序,以便我后来能够在这个顺序中安装它们,我发现使用金属玻璃最容易做到这一点。
class MyMeta(type):
counter = 0
def __init__(cls, name, bases, dic):
type.__init__(cls, name, bases, dic)
cls._order = MyMeta.counter
MyMeta.counter += 1
class MyType(object): # Python 2
__metaclass__ = MyMeta
class MyType(metaclass=MyMeta): # Python 3
pass
任何是 MyType 的子类,然后获得一个类属性 _ 命令,记录了类被定义的顺序。
其他回答
甲特克拉斯(甲特克拉斯)是一类,讲述了(某些)其他类应该是如何形成的。
这是一个案例,我看到甲状腺作为解决我的问题:我有一个真正复杂的问题,可能可以是不同的解决,但我选择用甲状腺解决它。 由于复杂性,这是我写的几个模块之一,在模块上的评论超过了编写的代码的数量。
#!/usr/bin/env python
# Copyright (C) 2013-2014 Craig Phillips. All rights reserved.
# This requires some explaining. The point of this metaclass excercise is to
# create a static abstract class that is in one way or another, dormant until
# queried. I experimented with creating a singlton on import, but that did
# not quite behave how I wanted it to. See now here, we are creating a class
# called GsyncOptions, that on import, will do nothing except state that its
# class creator is GsyncOptionsType. This means, docopt doesn't parse any
# of the help document, nor does it start processing command line options.
# So importing this module becomes really efficient. The complicated bit
# comes from requiring the GsyncOptions class to be static. By that, I mean
# any property on it, may or may not exist, since they are not statically
# defined; so I can't simply just define the class with a whole bunch of
# properties that are @property @staticmethods.
#
# So here's how it works:
#
# Executing 'from libgsync.options import GsyncOptions' does nothing more
# than load up this module, define the Type and the Class and import them
# into the callers namespace. Simple.
#
# Invoking 'GsyncOptions.debug' for the first time, or any other property
# causes the __metaclass__ __getattr__ method to be called, since the class
# is not instantiated as a class instance yet. The __getattr__ method on
# the type then initialises the class (GsyncOptions) via the __initialiseClass
# method. This is the first and only time the class will actually have its
# dictionary statically populated. The docopt module is invoked to parse the
# usage document and generate command line options from it. These are then
# paired with their defaults and what's in sys.argv. After all that, we
# setup some dynamic properties that could not be defined by their name in
# the usage, before everything is then transplanted onto the actual class
# object (or static class GsyncOptions).
#
# Another piece of magic, is to allow command line options to be set in
# in their native form and be translated into argparse style properties.
#
# Finally, the GsyncListOptions class is actually where the options are
# stored. This only acts as a mechanism for storing options as lists, to
# allow aggregation of duplicate options or options that can be specified
# multiple times. The __getattr__ call hides this by default, returning the
# last item in a property's list. However, if the entire list is required,
# calling the 'list()' method on the GsyncOptions class, returns a reference
# to the GsyncListOptions class, which contains all of the same properties
# but as lists and without the duplication of having them as both lists and
# static singlton values.
#
# So this actually means that GsyncOptions is actually a static proxy class...
#
# ...And all this is neatly hidden within a closure for safe keeping.
def GetGsyncOptionsType():
class GsyncListOptions(object):
__initialised = False
class GsyncOptionsType(type):
def __initialiseClass(cls):
if GsyncListOptions._GsyncListOptions__initialised: return
from docopt import docopt
from libgsync.options import doc
from libgsync import __version__
options = docopt(
doc.__doc__ % __version__,
version = __version__,
options_first = True
)
paths = options.pop('<path>', None)
setattr(cls, "destination_path", paths.pop() if paths else None)
setattr(cls, "source_paths", paths)
setattr(cls, "options", options)
for k, v in options.iteritems():
setattr(cls, k, v)
GsyncListOptions._GsyncListOptions__initialised = True
def list(cls):
return GsyncListOptions
def __getattr__(cls, name):
cls.__initialiseClass()
return getattr(GsyncListOptions, name)[-1]
def __setattr__(cls, name, value):
# Substitut option names: --an-option-name for an_option_name
import re
name = re.sub(r'^__', "", re.sub(r'-', "_", name))
listvalue = []
# Ensure value is converted to a list type for GsyncListOptions
if isinstance(value, list):
if value:
listvalue = [] + value
else:
listvalue = [ None ]
else:
listvalue = [ value ]
type.__setattr__(GsyncListOptions, name, listvalue)
# Cleanup this module to prevent tinkering.
import sys
module = sys.modules[__name__]
del module.__dict__['GetGsyncOptionsType']
return GsyncOptionsType
# Our singlton abstract proxy class.
class GsyncOptions(object):
__metaclass__ = GetGsyncOptionsType()
简而言之:一类是创建一个例子的图标,一类是创建一个类的图标,可以很容易地看到,在Python类中,也需要第一类对象才能实现这种行为。
我从来没有自己写过一个,但我认为在Django框架中可以看到最可爱的用途之一。模型类使用一个模型类的方法,以允许写新的模型或形式类的宣言风格。
剩下的就是:如果你不知道什么是金属玻璃,那么你不需要它们的可能性是99%。
Python 3 更新
在一个甲状腺中,有(目前)两个关键方法:
__prepare__ 允许您提供自定义地图(如 OrderedDict)作为名称空间使用,而类正在创建。
__new__ 负责最终类的实际创建/修改。
一个色彩色彩,不做任何东西 - 额外的金属类会喜欢:
class Meta(type):
def __prepare__(metaclass, cls, bases):
return dict()
def __new__(metacls, cls, bases, clsdict):
return super().__new__(metacls, cls, bases, clsdict)
一个简单的例子:
说你想要一些简单的验证代码在你的属性上运行 - 因为它必须总是一个 int 或 str. 没有一个 metaclass,你的类会看起来像:
class Person:
weight = ValidateType('weight', int)
age = ValidateType('age', int)
name = ValidateType('name', str)
正如你可以看到的那样,你必须重复属性的名称两次,这使得类型与刺激的错误一起可能。
一个简单的甲状腺可以解决这个问题:
class Person(metaclass=Validator):
weight = ValidateType(int)
age = ValidateType(int)
name = ValidateType(str)
class Validator(type):
def __new__(metacls, cls, bases, clsdict):
# search clsdict looking for ValidateType descriptors
for name, attr in clsdict.items():
if isinstance(attr, ValidateType):
attr.name = name
attr.attr = '_' + name
# create final class and return it
return super().__new__(metacls, cls, bases, clsdict)
一个样本运行:
p = Person()
p.weight = 9
print(p.weight)
p.weight = '9'
生产:
9
Traceback (most recent call last):
File "simple_meta.py", line 36, in <module>
p.weight = '9'
File "simple_meta.py", line 24, in __set__
(self.name, self.type, value))
TypeError: weight must be of type(s) <class 'int'> (got '9')
注意:这个例子是简单的,它也可能已经完成了一个类装饰师,但假设一个真正的金属玻璃会做得更多。
class ValidateType:
def __init__(self, type):
self.name = None # will be set by metaclass
self.attr = None # will be set by metaclass
self.type = type
def __get__(self, inst, cls):
if inst is None:
return self
else:
return inst.__dict__[self.attr]
def __set__(self, inst, value):
if not isinstance(value, self.type):
raise TypeError('%s must be of type(s) %s (got %r)' %
(self.name, self.type, value))
else:
inst.__dict__[self.attr] = value
类型实际上是一类 - 创建另一个类的类型. 大多数类型是类型的子类型. 类型接收新类作为其第一个论点,并提供到类对象的访问,如下所述的细节:
>>> class MetaClass(type):
... def __init__(cls, name, bases, attrs):
... print ('class name: %s' %name )
... print ('Defining class %s' %cls)
... print('Bases %s: ' %bases)
... print('Attributes')
... for (name, value) in attrs.items():
... print ('%s :%r' %(name, value))
...
>>> class NewClass(object, metaclass=MetaClass):
... get_choch='dairy'
...
class name: NewClass
Bases <class 'object'>:
Defining class <class 'NewClass'>
get_choch :'dairy'
__module__ :'builtins'
__qualname__ :'NewClass'
注:
请注意,课堂在任何时候都没有被暂停;创建课堂的简单行为引发了金属课堂的执行。
在以对象为导向的编程中,一个代码类是一种类,其例子是类。 正如普通类定义某些对象的行为一样,一个代码类定义某些类的行为和其例子 这个术语的代码类简单地意味着用于创建类的东西。