我想删除这个数据帧中的行:

a)在所有列中包含NAs。下面是我的示例数据帧。

             gene hsap mmul mmus rnor cfam
1 ENSG00000208234    0   NA   NA   NA   NA
2 ENSG00000199674    0   2    2    2    2
3 ENSG00000221622    0   NA   NA   NA   NA
4 ENSG00000207604    0   NA   NA   1    2
5 ENSG00000207431    0   NA   NA   NA   NA
6 ENSG00000221312    0   1    2    3    2

基本上,我想获得如下所示的数据帧。

             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0   2    2    2    2
6 ENSG00000221312    0   1    2    3    2

b)只在某些列中包含NAs,所以我也可以得到这个结果:

             gene hsap mmul mmus rnor cfam
2 ENSG00000199674    0   2    2    2    2
4 ENSG00000207604    0   NA   NA   1    2
6 ENSG00000221312    0   1    2    3    2

当前回答

delete.dirt <- function(DF, dart=c('NA')) {
  dirty_rows <- apply(DF, 1, function(r) !any(r %in% dart))
  DF <- DF[dirty_rows, ]
}

mydata <- delete.dirt(mydata)

上面的函数删除数据帧中任何列中有'NA'的所有行,并返回结果数据。如果你想检查多个值,如NA和?将函数参数中的dart=c('NA')更改为dart=c('NA', '?')

其他回答

我更喜欢用下面的方法来检查行中是否包含NAs:

row.has.na <- apply(final, 1, function(x){any(is.na(x))})

这将返回逻辑向量,其中的值表示一行中是否有NA。你可以使用它来查看你需要删除多少行:

sum(row.has.na)

并最终放弃它们

final.filtered <- final[!row.has.na,]

对于过滤具有特定部分NAs的行,它变得有点棘手(例如,您可以将'final[,5:6]'输入到'apply')。 一般来说,Joris Meys的解决方案似乎更优雅。

尝试na.omit (your.data.frame)。至于第二个问题,试着把它作为另一个问题发布(为了清晰)。

我是个合成器:)。这里我把答案组合成一个函数:

#' keep rows that have a certain number (range) of NAs anywhere/somewhere and delete others
#' @param df a data frame
#' @param col restrict to the columns where you would like to search for NA; eg, 3, c(3), 2:5, "place", c("place","age")
#' \cr default is NULL, search for all columns
#' @param n integer or vector, 0, c(3,5), number/range of NAs allowed.
#' \cr If a number, the exact number of NAs kept
#' \cr Range includes both ends 3<=n<=5
#' \cr Range could be -Inf, Inf
#' @return returns a new df with rows that have NA(s) removed
#' @export
ez.na.keep = function(df, col=NULL, n=0){
    if (!is.null(col)) {
        # R converts a single row/col to a vector if the parameter col has only one col
        # see https://radfordneal.wordpress.com/2008/08/20/design-flaws-in-r-2-%E2%80%94-dropped-dimensions/#comments
        df.temp = df[,col,drop=FALSE]
    } else {
        df.temp = df
    }

    if (length(n)==1){
        if (n==0) {
            # simply call complete.cases which might be faster
            result = df[complete.cases(df.temp),]
        } else {
            # credit: http://stackoverflow.com/a/30461945/2292993
            log <- apply(df.temp, 2, is.na)
            logindex <- apply(log, 1, function(x) sum(x) == n)
            result = df[logindex, ]
        }
    }

    if (length(n)==2){
        min = n[1]; max = n[2]
        log <- apply(df.temp, 2, is.na)
        logindex <- apply(log, 1, function(x) {sum(x) >= min && sum(x) <= max})
        result = df[logindex, ]
    }

    return(result)
}

我的猜测是,这个问题可以用这样一种更优雅的方式解决:

  m <- matrix(1:25, ncol = 5)
  m[c(1, 6, 13, 25)] <- NA
  df <- data.frame(m)
  library(dplyr) 
  df %>%
  filter_all(any_vars(is.na(.)))
  #>   X1 X2 X3 X4 X5
  #> 1 NA NA 11 16 21
  #> 2  3  8 NA 18 23
  #> 3  5 10 15 20 NA

Dplyr 1.0.4引入了两个配套的过滤函数:if_any()和if_all()。在这种情况下,if_all()伴随函数将特别有用:

a)删除所有列中包含NAs的行

df %>% 
  filter(if_all(everything(), ~ !is.na(.x)))

这一行将只保留那些列中没有NAs的行。

b)删除仅在某些列中包含NAs的行

cols_to_check = c("rnor", "cfam")

df %>% 
  filter(if_all(cols_to_check, ~ !is.na(.x)))

这一行将检查任何指定的列(cols_to_check)是否有NAs,并只保留没有NAs的那些行。