这是运行脚本检查Tensorflow是否工作时收到的消息:

I tensorflow/stream_executor/dso_loader.cc:125] successfully opened CUDA library libcublas.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:125] successfully opened CUDA library libcudnn.so.5 locally
I tensorflow/stream_executor/dso_loader.cc:125] successfully opened CUDA library libcufft.so.8.0 locally
I tensorflow/stream_executor/dso_loader.cc:125] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:125] successfully opened CUDA library libcurand.so.8.0 locally
W tensorflow/core/platform/cpu_feature_guard.cc:95] The TensorFlow library wasn't compiled to use SSE4.2 instructions, but these are available on your machine and could speed up CPU computations.
W tensorflow/core/platform/cpu_feature_guard.cc:95] The TensorFlow library wasn't compiled to use AVX instructions, but these are available on your machine and could speed up CPU computations.
I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:910] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero

我注意到它提到了SSE4.2和AVX,

什么是SSE4.2和AVX? 这些SSE4.2和AVX如何提高Tensorflow任务的CPU计算。 如何使用这两个库使Tensorflow编译?


当前回答

当从源代码构建TensorFlow时,您将运行configure脚本。configure脚本问的其中一个问题如下:

Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native]

configure脚本将您指定的标志附加到构建TensorFlow pip包的bazel命令。一般来说,你可以用以下两种方式之一来回应这个提示:

如果你构建TensorFlow的CPU类型与你将要运行TensorFlow的CPU类型相同,那么你应该接受默认值(-march=native)。这个选项将针对您机器的CPU类型优化生成的代码。 如果你在一种CPU类型上构建TensorFlow,但将在另一种CPU类型上运行TensorFlow,那么可以考虑提供gcc中描述的更具体的优化标志 文档。

在按照前面的项目列表配置TensorFlow之后,您应该能够通过在运行的任何bazel命令中添加——config=opt标志来构建针对目标CPU的完全优化的TensorFlow。

其他回答

多亏了所有这些回复和一些试验和错误,我成功地将它安装在Mac上。所以分享一下我的解,也许对别人有用。

请遵循文档-从源代码安装TensorFlow的说明 当提示 当bazel选项"——config=opt"被指定时,请指定在编译过程中使用的优化标志[默认值是-march=native]

然后复制粘贴这个字符串:

-mavx -mavx2 -mfma -msse4.2

(默认选项会导致错误,其他一些标志也是如此。我没有得到错误与上述标志。顺便说一句,我回答了n个其他问题)

安装后,我验证了在训练深度模型时,相对于基于默认轮子的另一个安装(在macOS上安装TensorFlow),速度提高了~2倍到2.5倍

希望能有所帮助

我先回答你的第三个问题:

如果您想在conda-env中运行一个自行编译的版本,可以这样做。这些是我运行的获取tensorflow并将其安装到我的系统上的一般指令。注意:这个版本是AMD A10-7850版本(检查你的CPU支持什么指令…它可能不同)运行Ubuntu 16.04 LTS。我在conda-env中使用Python 3.5。链接到tensorflow源安装页面和上面提供的答案。

git clone https://github.com/tensorflow/tensorflow 
# Install Bazel
# https://bazel.build/versions/master/docs/install.html
sudo apt-get install python3-numpy python3-dev python3-pip python3-wheel
# Create your virtual env with conda.
source activate YOUR_ENV
pip install six numpy wheel, packaging, appdir
# Follow the configure instructions at:
# https://www.tensorflow.org/install/install_sources
# Build your build like below. Note: Check what instructions your CPU 
# support. Also. If resources are limited consider adding the following 
# tag --local_resources 2048,.5,1.0 . This will limit how much ram many
# local resources are used but will increase time to compile.
bazel build -c opt --copt=-mavx --copt=-msse4.1 --copt=-msse4.2  -k //tensorflow/tools/pip_package:build_pip_package
# Create the wheel like so:
bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg
# Inside your conda env:
pip install /tmp/tensorflow_pkg/NAME_OF_WHEEL.whl
# Then install the rest of your stack
pip install keras jupyter etc. etc.

关于第二个问题:

在我看来,一个带有优化的自编译版本是非常值得努力的。在我的设置中,以前需要560-600秒的计算现在只需要300秒!虽然确切的数字会有所不同,但我认为在您的特定设置上,您可以期望大约35-50%的速度提高。

最后你的第一个问题:

上面已经给出了很多答案。总结一下:AVX、SSE4.1、SSE4.2、MFA是X86 cpu上不同种类的扩展指令集。许多都包含处理矩阵或向量运算的优化指令。

我将强调我自己的误解,希望能为您节省一些时间:并不是说SSE4.2是取代SSE4.1的指令的新版本。SSE4 = SSE4.1(一组47条指令)+ SSE4.2(一组7条指令)

在tensorflow编译的上下文中,如果你的计算机支持AVX2和AVX,以及SSE4.1和SSE4.2,你应该把这些优化标志都放进去。不要像我一样,认为SSE4.2更新,应该超越SSE4.1。这显然是错误的!我不得不重新编译,因为这花了我40分钟。

要隐藏这些警告,可以在实际代码之前执行此操作。

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
import tensorflow as tf

使用SSE4.2和AVX编译TensorFlow,可以直接使用

Bazel build -config=mkl ——配置= "选择" ——科普特人=“3 = broadwell” ——科普特人= " o3 " / / tensorflow /工具/ pip_package: build_pip_package

来源: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/docker/Dockerfile.devel-cpu-mkl

当从源代码构建TensorFlow时,您将运行configure脚本。configure脚本问的其中一个问题如下:

Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native]

configure脚本将您指定的标志附加到构建TensorFlow pip包的bazel命令。一般来说,你可以用以下两种方式之一来回应这个提示:

如果你构建TensorFlow的CPU类型与你将要运行TensorFlow的CPU类型相同,那么你应该接受默认值(-march=native)。这个选项将针对您机器的CPU类型优化生成的代码。 如果你在一种CPU类型上构建TensorFlow,但将在另一种CPU类型上运行TensorFlow,那么可以考虑提供gcc中描述的更具体的优化标志 文档。

在按照前面的项目列表配置TensorFlow之后,您应该能够通过在运行的任何bazel命令中添加——config=opt标志来构建针对目标CPU的完全优化的TensorFlow。