我有一个熊猫数据帧df像:

a b
A 1
A 2
B 5
B 5
B 4
C 6

我想按第一列分组,并将第二列作为行中的列表:

A [1,2]
B [5,5,4]
C [6]

是否有可能使用pandas groupby来做这样的事情?


当前回答

排序耗时O(nlog(n)),是上述方案中耗时最多的操作

对于简单的解决方案(含单列)pd.Series。除非考虑其他框架,否则To_list可以工作并且可以被认为更有效

e.g.

import pandas as pd
from string import ascii_lowercase
import random

def generate_string(case=4):
    return ''.join([random.choice(ascii_lowercase) for _ in range(case)])

df = pd.DataFrame({'num_val':[random.randint(0,100) for _ in range(20000000)],'string_val':[generate_string() for _ in range(20000000)]})


%timeit df.groupby('string_val').agg({'num_val':pd.Series.to_list})

对于2000万条记录,大约需要17.2秒。相比之下,apply(list)大约需要19.2秒,lambda函数大约需要20.6秒

其他回答

我们用df。带有列表和系列构造函数的groupby

pd.Series({x : y.b.tolist() for x , y in df.groupby('a')})
Out[664]: 
A       [1, 2]
B    [5, 5, 4]
C          [6]
dtype: object

只是把之前的答案加起来,在我的情况下,我想要列表和其他函数,如min和max。这样做的方法是:

df = pd.DataFrame({
    'a':['A','A','B','B','B','C'], 
    'b':[1,2,5,5,4,6]
})

df=df.groupby('a').agg({
    'b':['min', 'max',lambda x: list(x)]
})

#then flattening and renaming if necessary
df.columns = df.columns.to_flat_index()
df.rename(columns={('b', 'min'): 'b_min', ('b', 'max'): 'b_max', ('b', '<lambda_0>'): 'b_list'},inplace=True)

如果在分组多个列时寻找一个唯一的列表,这可能会有所帮助:

df.groupby('a').agg(lambda x: list(set(x))).reset_index()

使用以下任何一种分组和agg食谱。

# Setup
df = pd.DataFrame({
  'a': ['A', 'A', 'B', 'B', 'B', 'C'],
  'b': [1, 2, 5, 5, 4, 6],
  'c': ['x', 'y', 'z', 'x', 'y', 'z']
})
df

   a  b  c
0  A  1  x
1  A  2  y
2  B  5  z
3  B  5  x
4  B  4  y
5  C  6  z

要将多个列聚合为列表,请使用以下任何一种方法:

df.groupby('a').agg(list)
df.groupby('a').agg(pd.Series.tolist)

           b          c
a                      
A     [1, 2]     [x, y]
B  [5, 5, 4]  [z, x, y]
C        [6]        [z]

若要只对单个列进行组列化,请将groupby转换为SeriesGroupBy对象,然后调用SeriesGroupBy.agg。使用,

df.groupby('a').agg({'b': list})  # 4.42 ms 
df.groupby('a')['b'].agg(list)    # 2.76 ms - faster

a
A       [1, 2]
B    [5, 5, 4]
C          [6]
Name: b, dtype: object

有点老了,但我是被指引到这里的。有办法把它按多个不同的列分组吗?

"column1", "column2", "column3"
"foo", "val1", 3
"foo", "val2", 0
"foo", "val2", 3
"bar", "other", 99

:

"column1", "column2", "column3"
"foo", "val1", [ 3 ]
"foo", "val2", [ 0, 3 ]
"bar", "other", [ 99 ]