我有一个熊猫数据帧df像:
a b
A 1
A 2
B 5
B 5
B 4
C 6
我想按第一列分组,并将第二列作为行中的列表:
A [1,2]
B [5,5,4]
C [6]
是否有可能使用pandas groupby来做这样的事情?
我有一个熊猫数据帧df像:
a b
A 1
A 2
B 5
B 5
B 4
C 6
我想按第一列分组,并将第二列作为行中的列表:
A [1,2]
B [5,5,4]
C [6]
是否有可能使用pandas groupby来做这样的事情?
当前回答
就像你说的pd的groupby方法。DataFrame对象可以做这项工作。
例子
L = ['A','A','B','B','B','C']
N = [1,2,5,5,4,6]
import pandas as pd
df = pd.DataFrame(zip(L,N),columns = list('LN'))
groups = df.groupby(df.L)
groups.groups
{'A': [0, 1], 'B': [2, 3, 4], 'C': [5]}
它给出了组的索引级描述。
例如,要获取单个组的元素,您可以这样做
groups.get_group('A')
L N
0 A 1
1 A 2
groups.get_group('B')
L N
2 B 5
3 B 5
4 B 4
其他回答
我发现的实现同样的事情的最简单的方法(至少对于一列)与Anamika的答案类似,只是使用了聚合函数的tuple语法。
df.groupby('a').agg(b=('b','unique'), c=('c','unique'))
这里我用“|”作为分隔符对元素进行分组
import pandas as pd
df = pd.read_csv('input.csv')
df
Out[1]:
Area Keywords
0 A 1
1 A 2
2 B 5
3 B 5
4 B 4
5 C 6
df.dropna(inplace = True)
df['Area']=df['Area'].apply(lambda x:x.lower().strip())
print df.columns
df_op = df.groupby('Area').agg({"Keywords":lambda x : "|".join(x)})
df_op.to_csv('output.csv')
Out[2]:
df_op
Area Keywords
A [1| 2]
B [5| 5| 4]
C [6]
使用以下任何一种分组和agg食谱。
# Setup
df = pd.DataFrame({
'a': ['A', 'A', 'B', 'B', 'B', 'C'],
'b': [1, 2, 5, 5, 4, 6],
'c': ['x', 'y', 'z', 'x', 'y', 'z']
})
df
a b c
0 A 1 x
1 A 2 y
2 B 5 z
3 B 5 x
4 B 4 y
5 C 6 z
要将多个列聚合为列表,请使用以下任何一种方法:
df.groupby('a').agg(list)
df.groupby('a').agg(pd.Series.tolist)
b c
a
A [1, 2] [x, y]
B [5, 5, 4] [z, x, y]
C [6] [z]
若要只对单个列进行组列化,请将groupby转换为SeriesGroupBy对象,然后调用SeriesGroupBy.agg。使用,
df.groupby('a').agg({'b': list}) # 4.42 ms
df.groupby('a')['b'].agg(list) # 2.76 ms - faster
a
A [1, 2]
B [5, 5, 4]
C [6]
Name: b, dtype: object
就像你说的pd的groupby方法。DataFrame对象可以做这项工作。
例子
L = ['A','A','B','B','B','C']
N = [1,2,5,5,4,6]
import pandas as pd
df = pd.DataFrame(zip(L,N),columns = list('LN'))
groups = df.groupby(df.L)
groups.groups
{'A': [0, 1], 'B': [2, 3, 4], 'C': [5]}
它给出了组的索引级描述。
例如,要获取单个组的元素,您可以这样做
groups.get_group('A')
L N
0 A 1
1 A 2
groups.get_group('B')
L N
2 B 5
3 B 5
4 B 4
排序耗时O(nlog(n)),是上述方案中耗时最多的操作
对于简单的解决方案(含单列)pd.Series。除非考虑其他框架,否则To_list可以工作并且可以被认为更有效
e.g.
import pandas as pd
from string import ascii_lowercase
import random
def generate_string(case=4):
return ''.join([random.choice(ascii_lowercase) for _ in range(case)])
df = pd.DataFrame({'num_val':[random.randint(0,100) for _ in range(20000000)],'string_val':[generate_string() for _ in range(20000000)]})
%timeit df.groupby('string_val').agg({'num_val':pd.Series.to_list})
对于2000万条记录,大约需要17.2秒。相比之下,apply(list)大约需要19.2秒,lambda函数大约需要20.6秒