我有一个熊猫数据帧df像:
a b
A 1
A 2
B 5
B 5
B 4
C 6
我想按第一列分组,并将第二列作为行中的列表:
A [1,2]
B [5,5,4]
C [6]
是否有可能使用pandas groupby来做这样的事情?
我有一个熊猫数据帧df像:
a b
A 1
A 2
B 5
B 5
B 4
C 6
我想按第一列分组,并将第二列作为行中的列表:
A [1,2]
B [5,5,4]
C [6]
是否有可能使用pandas groupby来做这样的事情?
当前回答
有点老了,但我是被指引到这里的。有办法把它按多个不同的列分组吗?
"column1", "column2", "column3"
"foo", "val1", 3
"foo", "val2", 0
"foo", "val2", 3
"bar", "other", 99
:
"column1", "column2", "column3"
"foo", "val1", [ 3 ]
"foo", "val2", [ 0, 3 ]
"bar", "other", [ 99 ]
其他回答
我发现的实现同样的事情的最简单的方法(至少对于一列)与Anamika的答案类似,只是使用了聚合函数的tuple语法。
df.groupby('a').agg(b=('b','unique'), c=('c','unique'))
只是把之前的答案加起来,在我的情况下,我想要列表和其他函数,如min和max。这样做的方法是:
df = pd.DataFrame({
'a':['A','A','B','B','B','C'],
'b':[1,2,5,5,4,6]
})
df=df.groupby('a').agg({
'b':['min', 'max',lambda x: list(x)]
})
#then flattening and renaming if necessary
df.columns = df.columns.to_flat_index()
df.rename(columns={('b', 'min'): 'b_min', ('b', 'max'): 'b_max', ('b', '<lambda_0>'): 'b_list'},inplace=True)
只是一个补充。熊猫。数据透视表更通用,似乎更方便:
"""data"""
df = pd.DataFrame( {'a':['A','A','B','B','B','C'],
'b':[1,2,5,5,4,6],
'c':[1,2,1,1,1,6]})
print(df)
a b c
0 A 1 1
1 A 2 2
2 B 5 1
3 B 5 1
4 B 4 1
5 C 6 6
"""pivot_table"""
pt = pd.pivot_table(df,
values=['b', 'c'],
index='a',
aggfunc={'b': list,
'c': set})
print(pt)
b c
a
A [1, 2] {1, 2}
B [5, 5, 4] {1}
C [6] {6}
有点老了,但我是被指引到这里的。有办法把它按多个不同的列分组吗?
"column1", "column2", "column3"
"foo", "val1", 3
"foo", "val2", 0
"foo", "val2", 3
"bar", "other", 99
:
"column1", "column2", "column3"
"foo", "val1", [ 3 ]
"foo", "val2", [ 0, 3 ]
"bar", "other", [ 99 ]
要解决一个数据框架的几个列的问题:
In [5]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6],'c'
...: :[3,3,3,4,4,4]})
In [6]: df
Out[6]:
a b c
0 A 1 3
1 A 2 3
2 B 5 3
3 B 5 4
4 B 4 4
5 C 6 4
In [7]: df.groupby('a').agg(lambda x: list(x))
Out[7]:
b c
a
A [1, 2] [3, 3]
B [5, 5, 4] [3, 4, 4]
C [6] [4]
这个答案的灵感来自Anamika Modi的回答。谢谢你!