我有一个熊猫数据帧df像:
a b
A 1
A 2
B 5
B 5
B 4
C 6
我想按第一列分组,并将第二列作为行中的列表:
A [1,2]
B [5,5,4]
C [6]
是否有可能使用pandas groupby来做这样的事情?
我有一个熊猫数据帧df像:
a b
A 1
A 2
B 5
B 5
B 4
C 6
我想按第一列分组,并将第二列作为行中的列表:
A [1,2]
B [5,5,4]
C [6]
是否有可能使用pandas groupby来做这样的事情?
当前回答
基于@B。M的答案,这里是一个更通用的版本,并更新为与更新的库版本一起工作:(numpy版本1.19.2,pandas版本1.2.1) 这个解决方案也可以处理多指标:
然而,这并没有经过严格的测试,请谨慎使用。
如果性能是重要的,下降到numpy级别:
import pandas as pd
import numpy as np
np.random.seed(0)
df = pd.DataFrame({'a': np.random.randint(0, 10, 90), 'b': [1,2,3]*30, 'c':list('abcefghij')*10, 'd': list('hij')*30})
def f_multi(df,col_names):
if not isinstance(col_names,list):
col_names = [col_names]
values = df.sort_values(col_names).values.T
col_idcs = [df.columns.get_loc(cn) for cn in col_names]
other_col_names = [name for idx, name in enumerate(df.columns) if idx not in col_idcs]
other_col_idcs = [df.columns.get_loc(cn) for cn in other_col_names]
# split df into indexing colums(=keys) and data colums(=vals)
keys = values[col_idcs,:]
vals = values[other_col_idcs,:]
# list of tuple of key pairs
multikeys = list(zip(*keys))
# remember unique key pairs and ther indices
ukeys, index = np.unique(multikeys, return_index=True, axis=0)
# split data columns according to those indices
arrays = np.split(vals, index[1:], axis=1)
# resulting list of subarrays has same number of subarrays as unique key pairs
# each subarray has the following shape:
# rows = number of non-grouped data columns
# cols = number of data points grouped into that unique key pair
# prepare multi index
idx = pd.MultiIndex.from_arrays(ukeys.T, names=col_names)
list_agg_vals = dict()
for tup in zip(*arrays, other_col_names):
col_vals = tup[:-1] # first entries are the subarrays from above
col_name = tup[-1] # last entry is data-column name
list_agg_vals[col_name] = col_vals
df2 = pd.DataFrame(data=list_agg_vals, index=idx)
return df2
测试:
In [227]: %timeit f_multi(df, ['a','d'])
2.54 ms ± 64.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [228]: %timeit df.groupby(['a','d']).agg(list)
4.56 ms ± 61.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
结果:
对于随机种子0,将得到:
其他回答
如果性能是重要的,下降到numpy级别:
import numpy as np
df = pd.DataFrame({'a': np.random.randint(0, 60, 600), 'b': [1, 2, 5, 5, 4, 6]*100})
def f(df):
keys, values = df.sort_values('a').values.T
ukeys, index = np.unique(keys, True)
arrays = np.split(values, index[1:])
df2 = pd.DataFrame({'a':ukeys, 'b':[list(a) for a in arrays]})
return df2
测试:
In [301]: %timeit f(df)
1000 loops, best of 3: 1.64 ms per loop
In [302]: %timeit df.groupby('a')['b'].apply(list)
100 loops, best of 3: 5.26 ms per loop
你可以使用groupby对感兴趣的列进行分组,然后将list应用到每个组:
In [1]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6]})
df
Out[1]:
a b
0 A 1
1 A 2
2 B 5
3 B 5
4 B 4
5 C 6
In [2]: df.groupby('a')['b'].apply(list)
Out[2]:
a
A [1, 2]
B [5, 5, 4]
C [6]
Name: b, dtype: object
In [3]: df1 = df.groupby('a')['b'].apply(list).reset_index(name='new')
df1
Out[3]:
a new
0 A [1, 2]
1 B [5, 5, 4]
2 C [6]
我发现的实现同样的事情的最简单的方法(至少对于一列)与Anamika的答案类似,只是使用了聚合函数的tuple语法。
df.groupby('a').agg(b=('b','unique'), c=('c','unique'))
如果在分组多个列时寻找一个唯一的列表,这可能会有所帮助:
df.groupby('a').agg(lambda x: list(set(x))).reset_index()
排序耗时O(nlog(n)),是上述方案中耗时最多的操作
对于简单的解决方案(含单列)pd.Series。除非考虑其他框架,否则To_list可以工作并且可以被认为更有效
e.g.
import pandas as pd
from string import ascii_lowercase
import random
def generate_string(case=4):
return ''.join([random.choice(ascii_lowercase) for _ in range(case)])
df = pd.DataFrame({'num_val':[random.randint(0,100) for _ in range(20000000)],'string_val':[generate_string() for _ in range(20000000)]})
%timeit df.groupby('string_val').agg({'num_val':pd.Series.to_list})
对于2000万条记录,大约需要17.2秒。相比之下,apply(list)大约需要19.2秒,lambda函数大约需要20.6秒