我有一个熊猫数据帧df像:

a b
A 1
A 2
B 5
B 5
B 4
C 6

我想按第一列分组,并将第二列作为行中的列表:

A [1,2]
B [5,5,4]
C [6]

是否有可能使用pandas groupby来做这样的事情?


当前回答

只是一个补充。熊猫。数据透视表更通用,似乎更方便:

"""data"""
df = pd.DataFrame( {'a':['A','A','B','B','B','C'],
                    'b':[1,2,5,5,4,6],
                    'c':[1,2,1,1,1,6]})
print(df)

   a  b  c
0  A  1  1
1  A  2  2
2  B  5  1
3  B  5  1
4  B  4  1
5  C  6  6
"""pivot_table"""
pt = pd.pivot_table(df,
                    values=['b', 'c'],
                    index='a',
                    aggfunc={'b': list,
                             'c': set})
print(pt)
           b       c
a                   
A     [1, 2]  {1, 2}
B  [5, 5, 4]     {1}
C        [6]     {6}

其他回答

我发现的实现同样的事情的最简单的方法(至少对于一列)与Anamika的答案类似,只是使用了聚合函数的tuple语法。

df.groupby('a').agg(b=('b','unique'), c=('c','unique'))

实现这一目标的简便方法是:

df.groupby('a').agg({'b':lambda x: list(x)})

考虑编写自定义聚合:https://www.kaggle.com/akshaysehgal/how-to-group-by-aggregate-using-py

有点老了,但我是被指引到这里的。有办法把它按多个不同的列分组吗?

"column1", "column2", "column3"
"foo", "val1", 3
"foo", "val2", 0
"foo", "val2", 3
"bar", "other", 99

:

"column1", "column2", "column3"
"foo", "val1", [ 3 ]
"foo", "val2", [ 0, 3 ]
"bar", "other", [ 99 ]

你可以使用groupby对感兴趣的列进行分组,然后将list应用到每个组:

In [1]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6]})
        df

Out[1]: 
   a  b
0  A  1
1  A  2
2  B  5
3  B  5
4  B  4
5  C  6

In [2]: df.groupby('a')['b'].apply(list)
Out[2]: 
a
A       [1, 2]
B    [5, 5, 4]
C          [6]
Name: b, dtype: object

In [3]: df1 = df.groupby('a')['b'].apply(list).reset_index(name='new')
        df1
Out[3]: 
   a        new
0  A     [1, 2]
1  B  [5, 5, 4]
2  C        [6]

只是把之前的答案加起来,在我的情况下,我想要列表和其他函数,如min和max。这样做的方法是:

df = pd.DataFrame({
    'a':['A','A','B','B','B','C'], 
    'b':[1,2,5,5,4,6]
})

df=df.groupby('a').agg({
    'b':['min', 'max',lambda x: list(x)]
})

#then flattening and renaming if necessary
df.columns = df.columns.to_flat_index()
df.rename(columns={('b', 'min'): 'b_min', ('b', 'max'): 'b_max', ('b', '<lambda_0>'): 'b_list'},inplace=True)