我有一个熊猫数据帧df像:

a b
A 1
A 2
B 5
B 5
B 4
C 6

我想按第一列分组,并将第二列作为行中的列表:

A [1,2]
B [5,5,4]
C [6]

是否有可能使用pandas groupby来做这样的事情?


当前回答

只是一个补充。熊猫。数据透视表更通用,似乎更方便:

"""data"""
df = pd.DataFrame( {'a':['A','A','B','B','B','C'],
                    'b':[1,2,5,5,4,6],
                    'c':[1,2,1,1,1,6]})
print(df)

   a  b  c
0  A  1  1
1  A  2  2
2  B  5  1
3  B  5  1
4  B  4  1
5  C  6  6
"""pivot_table"""
pt = pd.pivot_table(df,
                    values=['b', 'c'],
                    index='a',
                    aggfunc={'b': list,
                             'c': set})
print(pt)
           b       c
a                   
A     [1, 2]  {1, 2}
B  [5, 5, 4]     {1}
C        [6]     {6}

其他回答

就像你说的pd的groupby方法。DataFrame对象可以做这项工作。

例子

 L = ['A','A','B','B','B','C']
 N = [1,2,5,5,4,6]

 import pandas as pd
 df = pd.DataFrame(zip(L,N),columns = list('LN'))


 groups = df.groupby(df.L)

 groups.groups
      {'A': [0, 1], 'B': [2, 3, 4], 'C': [5]}

它给出了组的索引级描述。

例如,要获取单个组的元素,您可以这样做

 groups.get_group('A')

     L  N
  0  A  1
  1  A  2

  groups.get_group('B')

     L  N
  2  B  5
  3  B  5
  4  B  4

根据@EdChum对他的回答的评论来回答。评论是这样的

groupby is notoriously slow and memory hungry, what you could do is sort by column A, then find the idxmin and idxmax (probably store this in a dict) and use this to slice your dataframe would be faster I think 

让我们首先创建一个数据框架,第一列中有500k个类别,总df形状为2000万。

df = pd.DataFrame(columns=['a', 'b'])
df['a'] = (np.random.randint(low=0, high=500000, size=(20000000,))).astype(str)
df['b'] = list(range(20000000))
print(df.shape)
df.head()
# Sort data by first column 
df.sort_values(by=['a'], ascending=True, inplace=True)
df.reset_index(drop=True, inplace=True)

# Create a temp column
df['temp_idx'] = list(range(df.shape[0]))

# Take all values of b in a separate list
all_values_b = list(df.b.values)
print(len(all_values_b))
# For each category in column a, find min and max indexes
gp_df = df.groupby(['a']).agg({'temp_idx': [np.min, np.max]})
gp_df.reset_index(inplace=True)
gp_df.columns = ['a', 'temp_idx_min', 'temp_idx_max']

# Now create final list_b column, using min and max indexes for each category of a and filtering list of b. 
gp_df['list_b'] = gp_df[['temp_idx_min', 'temp_idx_max']].apply(lambda x: all_values_b[x[0]:x[1]+1], axis=1)

print(gp_df.shape)
gp_df.head()

上面的代码花费2分钟处理第一列中的2000万行和500k个类别。

你可以使用groupby对感兴趣的列进行分组,然后将list应用到每个组:

In [1]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6]})
        df

Out[1]: 
   a  b
0  A  1
1  A  2
2  B  5
3  B  5
4  B  4
5  C  6

In [2]: df.groupby('a')['b'].apply(list)
Out[2]: 
a
A       [1, 2]
B    [5, 5, 4]
C          [6]
Name: b, dtype: object

In [3]: df1 = df.groupby('a')['b'].apply(list).reset_index(name='new')
        df1
Out[3]: 
   a        new
0  A     [1, 2]
1  B  [5, 5, 4]
2  C        [6]

我发现的实现同样的事情的最简单的方法(至少对于一列)与Anamika的答案类似,只是使用了聚合函数的tuple语法。

df.groupby('a').agg(b=('b','unique'), c=('c','unique'))

实现这一目标的简便方法是:

df.groupby('a').agg({'b':lambda x: list(x)})

考虑编写自定义聚合:https://www.kaggle.com/akshaysehgal/how-to-group-by-aggregate-using-py