我有一个熊猫数据帧df像:
a b
A 1
A 2
B 5
B 5
B 4
C 6
我想按第一列分组,并将第二列作为行中的列表:
A [1,2]
B [5,5,4]
C [6]
是否有可能使用pandas groupby来做这样的事情?
我有一个熊猫数据帧df像:
a b
A 1
A 2
B 5
B 5
B 4
C 6
我想按第一列分组,并将第二列作为行中的列表:
A [1,2]
B [5,5,4]
C [6]
是否有可能使用pandas groupby来做这样的事情?
当前回答
是时候使用agg而不是apply了。
When
df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6], 'c': [1,2,5,5,4,6]})
如果你想让多个列堆叠到列表中,结果是pd。DataFrame
df.groupby('a')[['b', 'c']].agg(list)
# or
df.groupby('a').agg(list)
如果你想在列表中单列,结果在ps.Series
df.groupby('a')['b'].agg(list)
#or
df.groupby('a')['b'].apply(list)
注意,结果为pd。当你只聚合单列时,DataFrame大约比ps.Series中的结果慢10倍,在多列情况下使用它。
其他回答
你可以使用groupby对感兴趣的列进行分组,然后将list应用到每个组:
In [1]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6]})
df
Out[1]:
a b
0 A 1
1 A 2
2 B 5
3 B 5
4 B 4
5 C 6
In [2]: df.groupby('a')['b'].apply(list)
Out[2]:
a
A [1, 2]
B [5, 5, 4]
C [6]
Name: b, dtype: object
In [3]: df1 = df.groupby('a')['b'].apply(list).reset_index(name='new')
df1
Out[3]:
a new
0 A [1, 2]
1 B [5, 5, 4]
2 C [6]
这里我用“|”作为分隔符对元素进行分组
import pandas as pd
df = pd.read_csv('input.csv')
df
Out[1]:
Area Keywords
0 A 1
1 A 2
2 B 5
3 B 5
4 B 4
5 C 6
df.dropna(inplace = True)
df['Area']=df['Area'].apply(lambda x:x.lower().strip())
print df.columns
df_op = df.groupby('Area').agg({"Keywords":lambda x : "|".join(x)})
df_op.to_csv('output.csv')
Out[2]:
df_op
Area Keywords
A [1| 2]
B [5| 5| 4]
C [6]
是时候使用agg而不是apply了。
When
df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6], 'c': [1,2,5,5,4,6]})
如果你想让多个列堆叠到列表中,结果是pd。DataFrame
df.groupby('a')[['b', 'c']].agg(list)
# or
df.groupby('a').agg(list)
如果你想在列表中单列,结果在ps.Series
df.groupby('a')['b'].agg(list)
#or
df.groupby('a')['b'].apply(list)
注意,结果为pd。当你只聚合单列时,DataFrame大约比ps.Series中的结果慢10倍,在多列情况下使用它。
就像你说的pd的groupby方法。DataFrame对象可以做这项工作。
例子
L = ['A','A','B','B','B','C']
N = [1,2,5,5,4,6]
import pandas as pd
df = pd.DataFrame(zip(L,N),columns = list('LN'))
groups = df.groupby(df.L)
groups.groups
{'A': [0, 1], 'B': [2, 3, 4], 'C': [5]}
它给出了组的索引级描述。
例如,要获取单个组的元素,您可以这样做
groups.get_group('A')
L N
0 A 1
1 A 2
groups.get_group('B')
L N
2 B 5
3 B 5
4 B 4
使用以下任何一种分组和agg食谱。
# Setup
df = pd.DataFrame({
'a': ['A', 'A', 'B', 'B', 'B', 'C'],
'b': [1, 2, 5, 5, 4, 6],
'c': ['x', 'y', 'z', 'x', 'y', 'z']
})
df
a b c
0 A 1 x
1 A 2 y
2 B 5 z
3 B 5 x
4 B 4 y
5 C 6 z
要将多个列聚合为列表,请使用以下任何一种方法:
df.groupby('a').agg(list)
df.groupby('a').agg(pd.Series.tolist)
b c
a
A [1, 2] [x, y]
B [5, 5, 4] [z, x, y]
C [6] [z]
若要只对单个列进行组列化,请将groupby转换为SeriesGroupBy对象,然后调用SeriesGroupBy.agg。使用,
df.groupby('a').agg({'b': list}) # 4.42 ms
df.groupby('a')['b'].agg(list) # 2.76 ms - faster
a
A [1, 2]
B [5, 5, 4]
C [6]
Name: b, dtype: object