我有一个熊猫数据帧df像:
a b
A 1
A 2
B 5
B 5
B 4
C 6
我想按第一列分组,并将第二列作为行中的列表:
A [1,2]
B [5,5,4]
C [6]
是否有可能使用pandas groupby来做这样的事情?
我有一个熊猫数据帧df像:
a b
A 1
A 2
B 5
B 5
B 4
C 6
我想按第一列分组,并将第二列作为行中的列表:
A [1,2]
B [5,5,4]
C [6]
是否有可能使用pandas groupby来做这样的事情?
当前回答
根据@EdChum对他的回答的评论来回答。评论是这样的
groupby is notoriously slow and memory hungry, what you could do is sort by column A, then find the idxmin and idxmax (probably store this in a dict) and use this to slice your dataframe would be faster I think
让我们首先创建一个数据框架,第一列中有500k个类别,总df形状为2000万。
df = pd.DataFrame(columns=['a', 'b'])
df['a'] = (np.random.randint(low=0, high=500000, size=(20000000,))).astype(str)
df['b'] = list(range(20000000))
print(df.shape)
df.head()
# Sort data by first column
df.sort_values(by=['a'], ascending=True, inplace=True)
df.reset_index(drop=True, inplace=True)
# Create a temp column
df['temp_idx'] = list(range(df.shape[0]))
# Take all values of b in a separate list
all_values_b = list(df.b.values)
print(len(all_values_b))
# For each category in column a, find min and max indexes
gp_df = df.groupby(['a']).agg({'temp_idx': [np.min, np.max]})
gp_df.reset_index(inplace=True)
gp_df.columns = ['a', 'temp_idx_min', 'temp_idx_max']
# Now create final list_b column, using min and max indexes for each category of a and filtering list of b.
gp_df['list_b'] = gp_df[['temp_idx_min', 'temp_idx_max']].apply(lambda x: all_values_b[x[0]:x[1]+1], axis=1)
print(gp_df.shape)
gp_df.head()
上面的代码花费2分钟处理第一列中的2000万行和500k个类别。
其他回答
如果性能是重要的,下降到numpy级别:
import numpy as np
df = pd.DataFrame({'a': np.random.randint(0, 60, 600), 'b': [1, 2, 5, 5, 4, 6]*100})
def f(df):
keys, values = df.sort_values('a').values.T
ukeys, index = np.unique(keys, True)
arrays = np.split(values, index[1:])
df2 = pd.DataFrame({'a':ukeys, 'b':[list(a) for a in arrays]})
return df2
测试:
In [301]: %timeit f(df)
1000 loops, best of 3: 1.64 ms per loop
In [302]: %timeit df.groupby('a')['b'].apply(list)
100 loops, best of 3: 5.26 ms per loop
根据@EdChum对他的回答的评论来回答。评论是这样的
groupby is notoriously slow and memory hungry, what you could do is sort by column A, then find the idxmin and idxmax (probably store this in a dict) and use this to slice your dataframe would be faster I think
让我们首先创建一个数据框架,第一列中有500k个类别,总df形状为2000万。
df = pd.DataFrame(columns=['a', 'b'])
df['a'] = (np.random.randint(low=0, high=500000, size=(20000000,))).astype(str)
df['b'] = list(range(20000000))
print(df.shape)
df.head()
# Sort data by first column
df.sort_values(by=['a'], ascending=True, inplace=True)
df.reset_index(drop=True, inplace=True)
# Create a temp column
df['temp_idx'] = list(range(df.shape[0]))
# Take all values of b in a separate list
all_values_b = list(df.b.values)
print(len(all_values_b))
# For each category in column a, find min and max indexes
gp_df = df.groupby(['a']).agg({'temp_idx': [np.min, np.max]})
gp_df.reset_index(inplace=True)
gp_df.columns = ['a', 'temp_idx_min', 'temp_idx_max']
# Now create final list_b column, using min and max indexes for each category of a and filtering list of b.
gp_df['list_b'] = gp_df[['temp_idx_min', 'temp_idx_max']].apply(lambda x: all_values_b[x[0]:x[1]+1], axis=1)
print(gp_df.shape)
gp_df.head()
上面的代码花费2分钟处理第一列中的2000万行和500k个类别。
是时候使用agg而不是apply了。
When
df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6], 'c': [1,2,5,5,4,6]})
如果你想让多个列堆叠到列表中,结果是pd。DataFrame
df.groupby('a')[['b', 'c']].agg(list)
# or
df.groupby('a').agg(list)
如果你想在列表中单列,结果在ps.Series
df.groupby('a')['b'].agg(list)
#or
df.groupby('a')['b'].apply(list)
注意,结果为pd。当你只聚合单列时,DataFrame大约比ps.Series中的结果慢10倍,在多列情况下使用它。
只是把之前的答案加起来,在我的情况下,我想要列表和其他函数,如min和max。这样做的方法是:
df = pd.DataFrame({
'a':['A','A','B','B','B','C'],
'b':[1,2,5,5,4,6]
})
df=df.groupby('a').agg({
'b':['min', 'max',lambda x: list(x)]
})
#then flattening and renaming if necessary
df.columns = df.columns.to_flat_index()
df.rename(columns={('b', 'min'): 'b_min', ('b', 'max'): 'b_max', ('b', '<lambda_0>'): 'b_list'},inplace=True)
如果在分组多个列时寻找一个唯一的列表,这可能会有所帮助:
df.groupby('a').agg(lambda x: list(set(x))).reset_index()